Suppr超能文献

在复杂q阶正交对模糊数据下,通过使用EDAS方法和Sugeno Weber算子的个性化运动预防膝关节损伤。

Knee injury prevention via personalized exercise using EDAS method and Sugeno Weber operator under complex q rung orthopair fuzzy data.

作者信息

Zhang ShiJie, Sima Chuxin, Hou TaiFu

机构信息

Dongshin University, Naju, Jeollanam-do, 58245, Republic of Korea.

Kyungil University, Gyeongsan-si, Gyeongsangbuk-do, 38428, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 2;15(1):22499. doi: 10.1038/s41598-025-03327-7.

Abstract

Knee injuries are common in several people, frequently controlling for significant injuries and health care costs. This article explains the role of personalized exercise prescriptions in preventing knee injuries. For this purpose, we used the multicriteria decision-making (MCDM) technique to select the best alternative, including criteria such as level of muscle strength improvement, cardiovascular endurance, recovery time, and improvement in flexibility and range of motion. The complex q-rung orthopair fuzzy set (C-qROFS) is a prevailing tool for managing ambiguity by combining satisfactory, dissatisfactory, and complex phase data. It is the extent of fuzzy theories that characterize directional and magnitude-based uncertainties, allowing more significant decision-making. In existing research work, C-qROFS was defined with different aggregation operators. However, no work is available on combined Segeno Weber aggregation operator (AOs) and EDAS in the framework of C-qROFS. We propose some notion AOs such as C-qROF Sugeno Weber weighted averaging (C-qROFSWWA) and C-qROF Sugeno Weber weighted geometric (C-qROFSWWG) as essential properties. We have also proposed the EDAS technique for C-qROFS. The EDAS technique for C-qROFS certifies efficient decision-making by exploiting C-qROF information to assess alternatives based on proximity to an ideal solution. A real-life example is proposed for selecting the best-personalized exercise using our suggested aggregation operator. We take four alternatives after finding that rank strength training focused on quadriceps and hamstrings is the best alternative for preventing knee injuries. To check the superiority and validity of the suggested technique, a deep comparative study with the existing aggregation operator must be conducted.

摘要

膝关节损伤在许多人当中很常见,常常导致严重损伤并产生高昂的医疗费用。本文解释了个性化运动处方在预防膝关节损伤中的作用。为此,我们使用多准则决策(MCDM)技术来选择最佳方案,包括肌肉力量提升水平、心血管耐力、恢复时间以及柔韧性和活动范围改善等准则。复杂q阶正交对模糊集(C-qROFS)是一种通过结合满意、不满意和复杂阶段数据来处理模糊性的流行工具。它是模糊理论的一种扩展,能够刻画基于方向和量级的不确定性,从而实现更有效的决策。在现有研究工作中,C-qROFS是用不同的聚合算子定义的。然而,在C-qROFS框架下,尚无关于结合Segeno Weber聚合算子(AOs)和EDAS的研究。我们提出了一些概念性的AOs,如C-qROF Sugeno Weber加权平均(C-qROFSWWA)和C-qROF Sugeno Weber加权几何(C-qROFSWWG)作为基本属性。我们还为C-qROFS提出了EDAS技术。C-qROFS的EDAS技术通过利用C-qROF信息来评估备选方案与理想解的接近程度,从而确保有效的决策。我们提出了一个实际例子,使用我们建议的聚合算子来选择最佳的个性化运动方案。在发现针对股四头肌和腘绳肌的等级力量训练是预防膝关节损伤的最佳方案后,我们选取了四个备选方案。为检验所提技术的优越性和有效性,必须与现有的聚合算子进行深入的比较研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验