Suppr超能文献

音乐家静息状态下的大脑:脑磁图数据的多层网络分析

Musicians' brains at rest: multilayer network analysis of magnetoencephalography data.

作者信息

Mandke Kanad N, Tewarie Prejaas, Adjamian Peyman, Schürmann Martin, Meier Jil

机构信息

School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom.

出版信息

Cereb Cortex. 2025 Jul 1;35(7). doi: 10.1093/cercor/bhaf153.

Abstract

The ability to proficiently play a musical instrument requires a fine-grained synchronization between several sensorimotor and cognitive brain regions. Previous studies have demonstrated that the brain undergoes functional changes with musical training, identifiable also in resting-state data. These studies analyzed functional MRI or electrophysiological frequency-specific brain networks in isolation. While the analysis of such "mono-layer" networks has proven useful, it fails to capture the complexities of multiple interacting networks. To this end, we applied a multilayer network framework for analyzing publicly available data (Open MEG Archive) obtained with magnetoencephalography. We investigated resting-state differences between participants with musical training (n = 31) and those without (n = 31). While single-layer analysis did not demonstrate any group differences, multilayer analysis revealed that musicians show a modular organization that spans visuo-motor and fronto-temporal areas, known to be involved in musical performance execution, which is significantly different from non-musicians. Differences between the two groups are primarily observed in the theta (6.5 to 8 Hz), alpha1 (8.5 to 10 Hz), and beta1 (12.5 to 16 Hz) frequency bands. We demonstrate that the multilayer method provides additional information that single-layer analysis cannot. Overall, the multilayer network method provides a unique opportunity to explore the pan-spectral nature of oscillatory networks, with studies of brain plasticity as a potential future application.

摘要

熟练演奏乐器的能力需要多个感觉运动和认知脑区之间进行精细的同步。先前的研究表明,大脑会随着音乐训练发生功能变化,在静息状态数据中也可识别。这些研究单独分析了功能磁共振成像或特定频率的脑电生理网络。虽然对这种“单层”网络的分析已证明是有用的,但它无法捕捉多个相互作用网络的复杂性。为此,我们应用了一个多层网络框架来分析通过脑磁图获得的公开可用数据(开放脑磁图存档)。我们研究了接受过音乐训练的参与者(n = 31)和未接受过音乐训练的参与者(n = 31)之间的静息状态差异。虽然单层分析没有显示出任何组间差异,但多层分析表明,音乐家表现出一种跨越视觉运动和额颞区域的模块化组织,这些区域已知参与音乐表演的执行,这与非音乐家有显著不同。两组之间的差异主要在θ(6.5至8赫兹)、α1(8.5至10赫兹)和β1(12.5至16赫兹)频段中观察到。我们证明,多层方法提供了单层分析无法提供的额外信息。总体而言,多层网络方法为探索振荡网络的全谱性质提供了独特的机会,脑可塑性研究是其潜在的未来应用方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验