Yan Xin, Tang Lan-Xin, Ortúzar Maite, Yang Li-Quan, Sang Peng, Jin Na-Ying, Li Lin-Hua, Yang Zheng-Feng, Wang Yan-Wen, Li Wen-Jun, Hu Wei, Yin Yi-Rui
College of Agriculture and Biological Science, Dali University, Dali, China.
Xizang Key Laboratory of Plateau Fungi, Institute of Plateau Biology of Xizang Autonomous Region, Lhasa, China.
Front Microbiol. 2025 Jun 19;16:1615845. doi: 10.3389/fmicb.2025.1615845. eCollection 2025.
Uricases are oxidative enzymes that catalyze the conversion of uric acid to allantoin and hydrogen peroxide, widely utilized in uric acid testing and the treatment of gout, hyperuricemia, and Tumor Lysis Syndrome (TLS). The search for uricases with long-term thermostability has become a significant area of research.
In this study, a uricase gene (truox) was obtained from the genome of YIM 77501, which was subsequently cloned and heterologously expressed. The resulting enzyme, TrUox, was comprehensively characterized for its biochemical properties and analyzed through molecular dynamics (MD) simulations.
TrUox exhibits maximal catalytic activity at 35°C and pH 7.6 (mesophilic range). Notably, its thermostability is exceptional: the enzyme retains over 90% residual activity after 4 days of incubation at 50°C (with activity measured post-thermal treatment at 35°C) and maintains >90% activity for 10 days at physiological temperature (37°C). , 1.14 μg/mL TrUox effectively lowered serum uric acid (UA) from >700 to < 420 μM within 2 h in hyperuricemic models. MD simulations comparing TrUox with Rasburicase indicate it's more rigid/stable globally, less flexible, has fewer sub-states, and is more stable in FEL.
These results demonstrate TrUox as a robust uricase exhibiting dual advantages of catalytic efficiency and enhanced thermostability, positioning it as a promising biocatalyst for industrial-scale production and therapeutic development. Our preliminary study into its thermostable mechanism provides a theoretical foundation for future production and research.
尿酸酶是一种氧化酶,可催化尿酸转化为尿囊素和过氧化氢,广泛应用于尿酸检测以及痛风、高尿酸血症和肿瘤溶解综合征(TLS)的治疗。寻找具有长期热稳定性的尿酸酶已成为一个重要的研究领域。
在本研究中,从YIM 77501的基因组中获得了一个尿酸酶基因(truox),随后进行克隆并异源表达。对所得的酶TrUox的生化特性进行了全面表征,并通过分子动力学(MD)模拟进行了分析。
TrUox在35°C和pH 7.6(嗜温范围)时表现出最大催化活性。值得注意的是,其热稳定性极佳:在50°C孵育4天后(在35°C进行热处理后测量活性),该酶保留超过90%的残余活性,并且在生理温度(37°C)下10天内保持>90%的活性。在高尿酸血症模型中,1.14μg/mL的TrUox在2小时内有效地将血清尿酸(UA)从>700μM降低至<420μM。将TrUox与拉布立酶进行MD模拟比较表明,它在整体上更刚性/稳定,灵活性更低,亚状态更少,并且在自由能景观(FEL)中更稳定。
这些结果表明TrUox是一种强大的尿酸酶,具有催化效率和增强的热稳定性双重优势,使其成为工业规模生产和治疗开发的有前途的生物催化剂。我们对其热稳定机制的初步研究为未来的生产和研究提供了理论基础。