Baba Hanâ, Bouqdayr Meryem, Abbad Anass, Saih Asmae, Kidenya Benson R, Sesay Mohamed A, Addo Simpson, Wakrim Lahcen, Kettani Anass
Biotechnology R&D Unit, Institut Pasteur du Maroc, Casablanca, Morocco.
Laboratory of Biology and Health, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco.
J Public Health Afr. 2025 Jun 20;16(4):1348. doi: 10.4102/jphia.v16i4.1348. eCollection 2025.
Programmed death-1 (PD-1) is an immune checkpoint receptor that regulates T-cell function by modulating and terminating immune responses.
This study investigates the functional and structural impact of missense single nucleotide polymorphisms in the human () gene.
The data related to gene single nucleotide polymorphisms [SNPs] were collected from dbSNP.
PredictSNP1.0, integrating eight tools (sorting intolerant from tolerant [SIFT], PolyPhen-1/2, multivariate analysis of protein polymorphism [MAPP], predictor of human deleterious [PhD] SNP, screening for non-acceptable polymorphisms [SNAP], PANTHER, nsSNPAnalyzer), was used for variant predictions. Conservation was assessed with ConSurf, stability with MUPro and I-Mutant 2.0 and pathogenicity with MutPred2. Molecular dynamics (MD) simulations analysed native and mutant PD-1 variants over 100 nanosecond (ns), assessing root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration ( ), solvent-accessible surface area (SASA) and hydrogen bonding.
D117V and W286G were identified as the most deleterious variants. However, W286G was located in an unfavourable structural region, rendering its model unreliable and excluding it from further analysis. Molecular dynamic simulations on the native and D117V models showed no significant differences in RMSD, RMSF, , SASA or hydrogen bonding, suggesting D117V (rs772130993) has minimal impact on PD-1 stability or flexibility.
Bioinformatics tools predicted the D117V variant as deleterious, but molecular dynamics simulations suggest it may have limited functional impact.
These findings underscore the importance of integrating computational predictions with experimental validation to guide therapeutic exploration of genetic variants.
程序性死亡受体1(PD-1)是一种免疫检查点受体,通过调节和终止免疫反应来调控T细胞功能。
本研究调查人程序性死亡受体1(PD-1)基因错义单核苷酸多态性对其功能和结构的影响。
与PD-1基因单核苷酸多态性(SNP)相关的数据来自dbSNP。
使用整合了八种工具(从耐受中筛选不耐受[SIFT]、多聚phen-1/2、蛋白质多态性多变量分析[MAPP]、人类有害性预测[PhD]SNP、不可接受多态性筛选[SNAP]、PANTHER、nsSNPAnalyzer)的PredictSNP1.0进行变异预测。使用ConSurf评估保守性,使用MUPro和I-Mutant 2.0评估稳定性,使用MutPred2评估致病性。分子动力学(MD)模拟对天然和突变型PD-1变体进行了超过100纳秒(ns)的分析,评估了均方根偏差(RMSD)、均方根波动(RMSF)、回转半径( )、溶剂可及表面积(SASA)和氢键。
D117V和W286G被确定为最有害的变体。然而,W286G位于不利的结构区域,导致其模型不可靠,因此在进一步分析中将其排除。对天然和D117V模型的分子动力学模拟显示,RMSD、RMSF、 、SASA或氢键方面没有显著差异,这表明D117V(rs772130993)对PD-1稳定性或灵活性的影响最小。
生物信息学工具预测D117V变体具有有害性,但分子动力学模拟表明其功能影响可能有限。
这些发现强调了将计算预测与实验验证相结合以指导基因变体治疗探索的重要性。