Suppr超能文献

用于……的最小穿梭载体

Minimal shuttle vectors for .

作者信息

Scutteri Lorenzo, Barth Patrick, Rahi Sahand Jamal

机构信息

Laboratory of the Physics of Biological Systems, École polytechnique fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.

Interfaculty Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.

出版信息

Synth Biol (Oxf). 2025 May 21;10(1):ysaf010. doi: 10.1093/synbio/ysaf010. eCollection 2025.

Abstract

Sophisticated genetic engineering tasks such as protein domain grafting and multi-gene fusions are hampered by the lack of suitable vector backbones. In particular, many restriction sites are in the backbone outside the polylinker region (multiple cloning site; MCS) and thus unavailable for use, and the overall length of a plasmid correlates with poorer ligation efficiency. To address this need, we describe the design and validation of a collection of six minimal integrating or centromeric shuttle vectors for , a widely used model organism in synthetic biology. We constructed the plasmids using gene synthesis and consisting only of a yeast selection marker (, , , , , or ), a bacterial selection marker (ampicillin resistance), an origin of replication, and the MCS flanked by M13 forward and reverse sequences. We used truncated variants of these elements where available and eliminated all other sequences typically found in plasmids. The MCS consists of ten unique restriction sites. To our knowledge, at sizes ranging from ~2.6 to 3.5 kb, these are the smallest shuttle vectors described for yeast. Further, we removed common restriction sites in the open reading frames and terminators, freeing up ~30 cut sites in each plasmid. We named our pLS series in accordance with the well-known pRS vectors, which are on average 63% larger: pLS400, pLS410 (); pLS403, pLS413 (); pLS404, pLS414 (); pLS405, pLS415 (); pLS406, pLS416 (); and pLS408, pLS418 (). This resource substantially simplifies advanced synthetic biology engineering in .

摘要

诸如蛋白质结构域嫁接和多基因融合等复杂的基因工程任务,因缺乏合适的载体骨架而受到阻碍。特别是,许多限制酶切位点位于多克隆位点(MCS)以外的骨架区域,因此无法使用,而且质粒的总长度与较差的连接效率相关。为满足这一需求,我们描述了一组六个最小整合或着丝粒穿梭载体的设计与验证,这些载体用于合成生物学中广泛使用的模式生物酿酒酵母。我们使用基因合成构建了这些质粒,它们仅由一个酵母选择标记(URA3、LEU2、TRP1、HIS3、ADE2或LYS2)、一个细菌选择标记(氨苄青霉素抗性)、一个复制起点以及两侧带有M13正向和反向序列的MCS组成。我们在可用的情况下使用了这些元件的截短变体,并去除了质粒中通常发现的所有其他序列。MCS由十个独特的限制酶切位点组成。据我们所知,在大小约为2.6至3.5 kb的范围内,这些是为酵母描述的最小的穿梭载体。此外,我们去除了开放阅读框和终止子中的常见限制酶切位点,在每个质粒中释放了约30个切割位点。我们根据著名的pRS载体(平均大63%)将我们的pLS系列命名为:pLS400、pLS410(URA3);pLS403、pLS413(LEU2);pLS404、pLS414(TRP1);pLS405、pLS415(HIS3);pLS406、pLS416(ADE2);以及pLS408、pLS418(LYS2)。这一资源极大地简化了酿酒酵母中的先进合成生物学工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31e0/12224612/492581cf42f8/ysaf010ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验