Peng Yuhang, Bi Ke, Zhang Xiaolin, Huang Ning, Ji Xiang, Chen Weifu, Ma Ying, Cheng Yuan, Jiang Yongxiang, Yue Jianhe
Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Front Neurol. 2025 Jun 19;16:1599856. doi: 10.3389/fneur.2025.1599856. eCollection 2025.
This study aims to develop and validate an automated machine learning model to predict perioperative ischemic stroke (PIS) risk in endovascularly treated patients with ruptured intracranial aneurysms (RIAs), with the goal of establishing a clinical decision-support tool.
In this retrospective cohort study, we analyzed RIA patients undergoing endovascular treatment at our neurosurgical center (December 2013-February 2024). The least absolute shrinkage and selection operator (LASSO) method was used to screen essential features associated with PIS. Based on these features, nine machine learning models were constructed using a training set (75% of participants) and assessed on a test set (25% of participants). Through comparative analysis, using metrics such as area under the receiver operating characteristic curve (ROCAUC) and Brier score, we identified the optimal model-random forest (RF)-for predicting PIS. To interpret the RF models, we utilized the Shapley Additive exPlanations (SHAP).
The final cohort comprised 647 consecutive RIA patients who underwent endovascular intervention. LASSO regression identified 13 clinically actionable predictors of PIS from the initial variables. These predictors encompassed: vascular risk factors (hyperlipidemia, arteriosclerosis); neuroimaging indicators of severity (modified Fisher scale, aneurysm location, and neck-to-diameter ratio); clinical status (Glasgow Coma Scale score, Hunt-Hess grade, age, sex); procedural complications (intraprocedural rupture, periprocedural re-rupture); and therapeutic determinants (therapy method and history of ischemic comorbidities). Nine machine learning algorithms were evaluated using stratified 10-fold cross-validation. Among them, the RF model demonstrated the best performance, with the ROCAUC of 92.11% (95%CI: 89.74-94.48%) on the test set and 87.08% (95%CI: 81.23-92.93%) on the training set. Finally, in a prospective validation cohort, the RF predictive model demonstrated an accuracy of 88.23% in forecasting the incidence of PIS. Additionally, based on this predictive model, this study developed a highly convenient web-based calculator. Clinicians only need to input the patient's key factors into this calculator to predict the postoperative incidence of PIS and provide individualized treatment plans for the patient.
We successfully developed and validated an interpretable machine learning framework, integrated with a clinical decision-support system, for predicting postprocedural PIS in endovascularly treated RIAs patients. This tool effectively predicted the likelihood of PIS, enabling high-risk patients to promptly take specific preventive and therapeutic measures.
本研究旨在开发并验证一种自动化机器学习模型,以预测接受血管内治疗的破裂颅内动脉瘤(RIA)患者围手术期缺血性卒中(PIS)的风险,目标是建立一种临床决策支持工具。
在这项回顾性队列研究中,我们分析了在我们神经外科中心(2013年12月至2024年2月)接受血管内治疗的RIA患者。使用最小绝对收缩和选择算子(LASSO)方法筛选与PIS相关的关键特征。基于这些特征,使用训练集(75%的参与者)构建了九个机器学习模型,并在测试集(25%的参与者)上进行评估。通过比较分析,使用受试者操作特征曲线下面积(ROCAUC)和Brier评分等指标,我们确定了预测PIS的最佳模型——随机森林(RF)。为了解释RF模型,我们使用了Shapley加法解释(SHAP)。
最终队列包括647例连续接受血管内干预的RIA患者。LASSO回归从初始变量中确定了13个PIS的临床可操作预测因子。这些预测因子包括:血管危险因素(高脂血症、动脉硬化);严重程度的神经影像学指标(改良Fisher分级、动脉瘤位置和颈径比);临床状态(格拉斯哥昏迷量表评分、Hunt-Hess分级、年龄、性别);手术并发症(术中破裂、围手术期再破裂);以及治疗决定因素(治疗方法和缺血性合并症病史)。使用分层10折交叉验证评估了九种机器学习算法。其中,RF模型表现最佳,在测试集上的ROCAUC为92.11%(95%CI:89.74 - 94.48%),在训练集上为87.08%(95%CI:81.23 - 92.93%)。最后,在前瞻性验证队列中,RF预测模型预测PIS发生率的准确率为88.23%。此外,基于此预测模型,本研究开发了一个非常方便的基于网络的计算器。临床医生只需将患者的关键因素输入此计算器,即可预测PIS的术后发生率,并为患者提供个性化治疗方案。
我们成功开发并验证了一个可解释的机器学习框架,并将其与临床决策支持系统集成,用于预测血管内治疗的RIA患者术后PIS。该工具有效预测了PIS的可能性,使高危患者能够及时采取特定的预防和治疗措施。