Suppr超能文献

迈向猪肉检验的全行业多层次评估框架:潜在应用与实施挑战

Towards an industry-wide, multilevel evaluation framework for pig meat inspection: potential applications and implementation challenges.

作者信息

Zisis A I, Kagerer C, Schmidt P, Rauch E

机构信息

Chair of Animal Welfare, Ethology, Animal Hygiene and Animal Husbandry, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, Munich, Bavaria Germany; Fleischprüfring Bayern e.V., Am Branden 6a, 82526 Vierkirchen, Bavaria Germany.

Fleischprüfring Bayern e.V., Am Branden 6a, 82526 Vierkirchen, Bavaria Germany.

出版信息

Animal. 2025 Jul;19(7):101577. doi: 10.1016/j.animal.2025.101577. Epub 2025 Jun 9.

Abstract

Meat inspection (MI) data can be useful as a monitoring tool of animal health and welfare on farm, thereby enhancing the sustainability and productivity of livestock. There is also concern about certain limitations of these data, primarily related to the quality and harmonisation of inspections across various slaughterhouses. In our study, we investigated the development of a cross-slaughterhouse ranking system for farmers using MI data. The integration of new digital tools in Germany, such as the web-based database Qualifood®, offers new opportunities for collecting and utilising MI data across different slaughterhouses, enabling at the same time digital feedback of these information to livestock farmers. To accomplish our research goal, MI data over a period of 5 years (2020-2024) was exported from Qualifood®. Our analysis was conducted using MI data from both cattle and pig farms. However, this manuscript focuses on presenting the statistical analysis model using pig data and the category "respiratory health" as a representative case study. We presented an annual overview of reference values -the so-called basic risk- for respiratory health findings using generalised linear mixed models. The basic risk of respiratory health findings for pigs showed a gradual decline from 14.4% in 2020 to approximately 12.0% in 2024. The calculated basic risks establish a reference for normal finding rates and provide a baseline assessment of respiratory health in southern Germany based on MI data. Furthermore, we estimated the variability of key random effects derived. Across all years, SDs for farm and delivery levels remain relatively stable between the selected and full datasets, indicating consistent variability at these levels. However, the slaughterhouse-level SDs are substantially higher in the full dataset compared to the selected slaughterhouses suggesting notable heterogeneity in reporting or detection practices across facilities. This underlines the importance of slaughterhouse selection when conducting cross-facility analyses and benchmarking. Towards a cross-slaughterhouse evaluation, we compare the farmer-specific risks and the basic risk using the concept of relative risk, also known as risk ratio. Our model demonstrates how recent advancements in digitalisation enable the evaluation of MI data across multiple slaughterhouses, underscoring the importance of region-wide, digital, and standardised MI data collection as a foundation for consistent and reliable cross-slaughterhouse assessments. By addressing inconsistencies in recording quality, our model can support a data-driven decision-making for farmers, industry stakeholders, and veterinary authorities, ultimately reinforcing the entire agricultural value chain and animal health and welfare management.

摘要

肉类检验(MI)数据可作为监测农场动物健康和福利的工具,从而提高畜牧业的可持续性和生产力。人们也对这些数据的某些局限性表示担忧,主要涉及不同屠宰场检验的质量和一致性。在我们的研究中,我们调查了利用MI数据为养殖户开发跨屠宰场排名系统的情况。德国新数字工具的整合,如基于网络的数据库Qualifood®,为跨不同屠宰场收集和利用MI数据提供了新机会,同时也能将这些信息以数字方式反馈给养殖户。为实现我们的研究目标,从Qualifood®导出了5年(2020 - 2024年)期间的MI数据。我们的分析使用了来自养牛场和养猪场的MI数据。然而,本手稿重点介绍使用猪数据和“呼吸健康”类别作为代表性案例研究的统计分析模型。我们使用广义线性混合模型展示了呼吸健康检查参考值(即所谓的基本风险)的年度概况。猪呼吸健康检查的基本风险从2020年的14.4%逐渐下降到2024年的约12.0%。计算出的基本风险为正常检出率建立了参考标准,并基于MI数据对德国南部的呼吸健康状况提供了基线评估。此外,我们估计了关键随机效应的变异性。在所有年份中,所选数据集和完整数据集中农场和交付水平的标准差相对稳定,表明这些水平存在一致的变异性。然而,完整数据集中屠宰场水平的标准差相比所选屠宰场要高得多,这表明不同设施在报告或检测方法上存在显著异质性。这凸显了在进行跨设施分析和基准测试时选择屠宰场的重要性。为了进行跨屠宰场评估,我们使用相对风险(也称为风险比)的概念比较养殖户特定风险和基本风险。我们的模型展示了数字化方面的最新进展如何能够对多个屠宰场的MI数据进行评估,强调了区域范围内数字化和标准化MI数据收集作为一致且可靠的跨屠宰场评估基础的重要性。通过解决记录质量方面的不一致问题,我们的模型可以支持养殖户、行业利益相关者和兽医当局进行数据驱动的决策,最终加强整个农业价值链以及动物健康和福利管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验