Suppr超能文献

用于围手术期心肌缺血心电图诊断的人工智能:一项范围综述。

Artificial intelligence for electrocardiographic diagnosis of perioperative myocardial ischaemia: a scoping review.

作者信息

Kim Anne, Chatterjee Mitchell, Iansavitchene Alla, Komeili Majid, Chan Adrian D C, Yang Homer, Chui Jason

机构信息

Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.

出版信息

Br J Anaesth. 2025 Sep;135(3):561-570. doi: 10.1016/j.bja.2025.05.037. Epub 2025 Jul 4.

Abstract

BACKGROUND

Perioperative electrocardiographic monitoring can offer immediate detection of myocardial ischaemia, yet its application in perioperative and remote monitoring settings is hampered by frequent false alarms and signal contamination. We performed a scoping review for the current state of artificial intelligence (AI) in perioperative ECG interpretation.

METHODS

A literature search in Ovid MEDLINE, EMBASE, Compendex, and CINAHL databases was performed from inception to May 10, 2023. All original research of ECG monitoring for myocardial ischaemia, myocardial infarction, or both was included.

RESULTS

A total of 182 original research articles published between 1991 and 2023 were included. Most studies (n=132) used a pre-existing ECG database to develop AI algorithms retrospectively, and the rest did not specify their sources. Processing filters were used in 58% of the studies to remove ECG noises/artifacts before AI algorithm development. Amongst the AI technologies used, ResNet demonstrated the highest median sensitivity, precision, and specificity at 98.4%, 99.8%, and 99.1%, respectively. There are only five studies with intermittent prospective ECG collection on ST-segment elevation myocardial infarction. No studies prospectively collected continuous ECG perioperatively, with frequent false alarms and signal contamination.

CONCLUSIONS

AI technology can achieve high diagnostic accuracy for myocardial ischaemia detection in clean intermittent electrocardiograms. However, almost all these algorithms were developed from a few open-source clean ECG databases without testing on 'noisy data', which limited their clinical applicability in the perioperative setting where signal contamination is frequent. AI algorithms on perioperative electrocardiography, tested in a noisy perioperative and remote monitoring environment, including wearable devices, are needed.

摘要

背景

围手术期心电图监测能够即时检测出心肌缺血,但频繁的误报和信号干扰阻碍了其在围手术期及远程监测中的应用。我们对人工智能(AI)在围手术期心电图解读方面的现状进行了一项范围综述。

方法

在Ovid MEDLINE、EMBASE、Compendex和CINAHL数据库中进行了从建库至2023年5月10日的文献检索。纳入了所有关于心肌缺血、心肌梗死或两者的心电图监测的原始研究。

结果

共纳入了1991年至2023年间发表的182篇原始研究文章。大多数研究(n = 132)回顾性地使用现有的心电图数据库来开发AI算法,其余研究未明确其数据来源。58%的研究在开发AI算法前使用处理滤波器去除心电图噪声/伪迹。在所使用的AI技术中,ResNet的中位灵敏度、精确度和特异性最高,分别为98.4%、99.8%和99.1%。仅有五项研究对ST段抬高型心肌梗死进行了间歇性前瞻性心电图采集。没有研究前瞻性地在围手术期持续采集心电图,存在频繁的误报和信号干扰。

结论

AI技术在干净的间歇性心电图中对心肌缺血检测可实现较高的诊断准确性。然而,几乎所有这些算法都是基于少数开源的干净心电图数据库开发的,未在“噪声数据”上进行测试,这限制了它们在信号干扰频繁的围手术期环境中的临床适用性。需要在包括可穿戴设备在内的嘈杂的围手术期和远程监测环境中测试围手术期心电图的AI算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d93/12489347/8d28189269fb/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验