Suppr超能文献

在数据驱动的预防模型中,将人工智能预测分析与自然疗法和基于瑜伽的干预措施相结合,以改善孕产妇心理健康和妊娠结局。

Integrating AI predictive analytics with naturopathic and yoga-based interventions in a data-driven preventive model to improve maternal mental health and pregnancy outcomes.

作者信息

Irfan Neha, Zafar Sherin, Shakil Kashish Ara, Wani Mudasir Ahmad, Kumar S N, Jaiganesh A, Abubeker K M

机构信息

Department of Computer Science and Engineering, School of Engineering Science and Technology, Jamia Hamdard, New Delhi, India.

Department of Computer Sciences, College of Computer and Information Science, Princess Nourah bint AbdulRahman University, Riyadh, Saudi Arabia.

出版信息

Sci Rep. 2025 Jul 4;15(1):23878. doi: 10.1038/s41598-025-07885-8.

Abstract

Maternal mental health during pregnancy is a crucial area of research due to its profound impact on both maternal and child well-being. This paper proposes a comprehensive approach to predicting and monitoring psychological health risks in pregnant women using advanced machine learning techniques. The study employs a systematic methodology including data collection, preprocessing, feature selection, and model implementation. Data collection was conducted at Majidia Hospital, involving a diverse sample of 70,000 pregnant women recruited through antenatal clinics, online health platforms, community outreach programs, and telephone surveys using structured questionnaires. Participants were selected across all pregnancy trimesters to ensure a representative demographic, capturing variations in age, educational background, occupational status, and parity. A diverse set of machine learning models, including Random Forest, Decision Tree, Support Vector Machine (SVM), Logistic Regression, Gaussian Naive Bayes, and Multilayer Perceptron (MLP), were evaluated alongside ensemble methods to achieve robust and reliable predictions. The experimental results demonstrate that the Random Forest model consistently outperforms other classifiers with an accuracy of 97.82% ± 0.03%, precision of 97.82% ± 0.03%, recall of 100.00% ± 0.00%, and an F1 score of 96.81% ± 0.02%. SVM and Decision Tree classifiers also showed strong performance, with accuracy scores of 93.79% ± 0.01% and 91.82% ± 0.03%, respectively. Furthermore, ensemble methods enhanced predictive performance, highlighting their ability to balance accuracy, precision, recall, and F1 score. In regression tasks, the Random Forest Regressor achieved near-perfect predictions with a Mean Squared Error (MSE) of 4.5767 × 10 and an R score of 1.000, underscoring its superior predictive capabilities. Additionally, a custom loss function integrating Cross-Entropy Loss and an F1 Score Penalty was introduced to address class imbalance and enhance model performance. The training process, conducted over 10 epochs, demonstrated consistent loss reduction, with the lowest recorded loss at epoch 8 (2.4382), reflecting effective learning and parameter tuning. This study envisions the development of an intelligent, web-based tool aimed at revolutionizing psychological health assessment and support for pregnant women. This tool will not only provide early diagnosis and intervention but also recommend personalized yoga practices and natural remedies to improve maternal mental health and overall wellbeing. These findings highlight the potential of AI-driven innovations in enhancing maternal care through holistic and accessible technological solutions.

摘要

孕期的孕产妇心理健康是一个至关重要的研究领域,因为它对孕产妇和儿童的福祉都有深远影响。本文提出了一种综合方法,利用先进的机器学习技术来预测和监测孕妇的心理健康风险。该研究采用了一种系统的方法,包括数据收集、预处理、特征选择和模型实施。数据收集在马吉迪亚医院进行,涉及通过产前诊所、在线健康平台、社区外展项目以及使用结构化问卷的电话调查招募的70000名孕妇的多样化样本。在所有孕期都选择了参与者,以确保具有代表性的人口统计学特征,涵盖年龄、教育背景、职业状况和产次的差异。评估了多种机器学习模型,包括随机森林、决策树、支持向量机(SVM)、逻辑回归、高斯朴素贝叶斯和多层感知器(MLP),以及集成方法,以实现稳健可靠的预测。实验结果表明,随机森林模型始终优于其他分类器,准确率为97.82%±0.03%,精确率为97.82%±0.03%,召回率为100.00%±0.00%,F1分数为96.81%±0.02%。SVM和决策树分类器也表现出强劲的性能,准确率分别为93.79%±0.01%和91.82%±0.03%。此外,集成方法提高了预测性能,突出了它们在平衡准确率、精确率、召回率和F1分数方面的能力。在回归任务中,随机森林回归器实现了近乎完美的预测,均方误差(MSE)为4.5767×10,R分数为1.000,突出了其卓越的预测能力。此外,引入了一种将交叉熵损失和F1分数惩罚相结合的自定义损失函数,以解决类别不平衡问题并提高模型性能。在10个轮次上进行的训练过程显示损失持续减少,在第8轮次记录到最低损失(2.4382),反映了有效的学习和参数调整。本研究设想开发一种基于网络的智能工具,旨在彻底改变对孕妇的心理健康评估和支持。该工具不仅将提供早期诊断和干预,还将推荐个性化的瑜伽练习和天然疗法,以改善孕产妇心理健康和整体福祉。这些发现凸显了人工智能驱动的创新通过全面且易于获取的技术解决方案在加强孕产妇护理方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b454/12227558/e75bfb2fee8d/41598_2025_7885_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验