Cao Xuejie, Miao Licheng, Jia Wenqi, Qin Hongye, Lin Guangliang, Ma Rongpeng, Jin Ting, Jiao Lifang
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China.
Nat Commun. 2025 Jul 5;16(1):6217. doi: 10.1038/s41467-025-58570-3.
Developing acid-stable and active ruthenium dioxide (RuO) catalysts for the oxygen evolution reaction (OER) is crucial for facilitating the large-scale applications of proton exchange membrane water electrolysis (PEMWE) for hydrogen production. Here, we propose a strain heterogeneity engineering strategy to simultaneously enhance the OER stability and activity of RuO electrocatalysts by introducing single-atom platinum (Pt). In a PEM water electrolyzer, the resultant Pt-RuO catalyst archives 3 A cm at a low voltage of 1.791 V and maintains a stable performance for over 500 h at 500 mA cm. These performance metrics highlight its potential for practical applications. Experiments and calculations analyses confirm that the bulk tensile strain effectively stabilizes the entire structure of electrocatalysts, while the regions of compressive strain are identified as highly active catalytic sites, where the weakened binding energy of oxo-intermediates improves the catalytic activity.
开发用于析氧反应(OER)的耐酸且活性高的二氧化钌(RuO)催化剂对于推动质子交换膜水电解(PEMWE)制氢的大规模应用至关重要。在此,我们提出一种应变异质性工程策略,通过引入单原子铂(Pt)来同时提高RuO电催化剂的OER稳定性和活性。在一个PEM水电解槽中,所得的Pt-RuO催化剂在1.791 V的低电压下实现了3 A cm的电流密度,并在500 mA cm下保持超过500小时的稳定性能。这些性能指标凸显了其实际应用潜力。实验和计算分析证实,体相拉伸应变有效地稳定了电催化剂的整体结构,而压缩应变区域被确定为高活性催化位点,在这些位点上,含氧中间体的结合能减弱提高了催化活性。