Zhu Weijie, Yao Fen, Cheng Kangjuan, Zhao Mengting, Yang Cheng-Jie, Dong Chung-Li, Hong Qiming, Jiang Qiu, Wang Zhoucheng, Liang Hanfeng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Key Laboratory of Preparation and Applications of Environmentally Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China.
J Am Chem Soc. 2023 Aug 16;145(32):17995-18006. doi: 10.1021/jacs.3c05556. Epub 2023 Aug 7.
The acidic oxygen evolution reaction (OER) has long been the bottleneck of proton exchange membrane water electrolyzers given its harsh oxidative and corrosive environments. Herein, we suggest an effective strategy to greatly enhance both the acidic OER activity and stability of CoO spinel by atomic Ru selective substitution on the octahedral Co sites. The resulting highly symmetrical octahedral Ru-O-Co collaborative coordination with strong electron coupling effect enables the direct dioxygen radical coupling OER pathway. Indeed, both experiments and theoretical calculations reveal a thermodynamically breakthrough heterogeneous diatomic oxygen mechanism. Additionally, the active Ru-O-Co units are well-maintained upon the acidic OER thanks to the electron transfer from surrounding electron-enriched tetrahedral Co atoms bridging oxygen bonds that suppresses the overoxidation and thus dissolution of active Ru and Co species. Consequently, the prepared catalyst, even with a low Ru mass loading of 42.8 μg cm, exhibits an attractive acidic OER performance with a low overpotential of 200 mV and a low potential decay rate of 0.45 mV h at 10 mA cm. Our work suggests an effective strategy to significantly enhance both the acidic OER activity and stability of low-cost electrocatalysts.
由于酸性析氧反应(OER)所处的苛刻氧化和腐蚀环境,长期以来一直是质子交换膜水电解槽的瓶颈。在此,我们提出了一种有效策略,通过在八面体Co位点上进行原子Ru选择性取代,大幅提高CoO尖晶石的酸性OER活性和稳定性。由此产生的具有高度对称的八面体Ru-O-Co协同配位以及强电子耦合效应,实现了直接双氧基耦合OER途径。事实上,实验和理论计算均揭示了一种热力学突破的异质双原子氧机制。此外,由于周围富电子四面体Co原子的电子转移桥接氧键,抑制了活性Ru和Co物种的过氧化及溶解,使得活性Ru-O-Co单元在酸性OER过程中得以良好保持。因此,即使制备的催化剂Ru质量负载低至42.8 μg cm,在10 mA cm下仍表现出有吸引力的酸性OER性能,过电位低至200 mV,电位衰减率低至0.45 mV h。我们的工作提出了一种有效策略,可显著提高低成本电催化剂的酸性OER活性和稳定性。