文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

穗花杉双黄酮抑制肺癌细胞中NF-κB的激活并介导细胞凋亡诱导:一项体外和计算机模拟研究

Amentoflavone Impedes NF-κB Activation and Mediates Apoptosis Induction in Lung Cancer Cells: An in vitro and in silico exploration.

作者信息

Faiyaz Syed Shah Mohammed, Ahmad Afza, Fatima Daniya, Shahid Syed Monowar Alam, Kaushik Gaurav, Verma Chaitenya, Tiwari Rohit Kumar, Kumar Vinay

机构信息

Department of Physiology, College of Medicine, University of Ha'il, Ha'il, 81451, Saudi Arabia.

Department of Physiology, Radha Devi Jageshwari Memorial Medical College & Hospital, Muzzafarpur, Bihar- 844127, India.

出版信息

J Inflamm Res. 2025 Jul 1;18:8657-8673. doi: 10.2147/JIR.S521756. eCollection 2025.


DOI:10.2147/JIR.S521756
PMID:40620604
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12228500/
Abstract

CONTEXT: Lung carcinoma is a major contributor to cancer incidence and mortality worldwide. Chronic activation of NF-κB triggers activation of its target genes involved in promoting malignancy, metastasis, irregular proliferation of cells, and/or their resistance to programmed cell death. Amentoflavone (AMF) is a biflavonoid with intrinsic ability to modulate key signaling pathways associated with homeostatic and non-homeostatic conditions impels its exploration as therapeutic candidate against non-small cell lung carcinoma (NSCLC) A549 cells. OBJECTIVE: This study investigates the anticancer potential of AMF in A549 cells, focusing on its unique dual role in NF-κB suppression and apoptosis induction, and compares its efficacy to the standard drug doxorubicin. MATERIALS AND METHODS: A549 cells were treated with varying concentrations of AMF for 24 h. The effects of AMF on cell proliferation, oxidative stress, mitochondrial membrane potential, caspase activation, apoptosis, and NF-κB activation was analyzed. RESULTS: A549 cell viability was substantially reduced (P < 0.001) at an AMF concentration of 60 µM. AMF exposure further increased nuclear fragmentation and condensation in A549 cells. AMF treatment induced apoptosis with concomitant augmentation intracellular production of reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and activation of the caspase cascade. Additionally, AMF mediated the inhibition of NF-κB and modulated the expression of NF-κB-associated genes involved in cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclinD1). These results were further supported by in silico studies, which demonstrated a considerable binding energy score of AMF with NF-κB p65/50 compared with the standard drug (doxorubicin). CONCLUSION: Thus, it was concluded that AMF exerts potent anticancer effects in NSCLC A549 cells through dual mechanism such as direct inhibition of NF-κB signaling and apoptosis induction combined with its high binding affinity, positions it as a promising therapeutic candidate for NSCLC. Further preclinical studies are warranted to validate these findings.

摘要

背景:肺癌是全球癌症发病率和死亡率的主要贡献因素。核因子κB(NF-κB)的慢性激活会触发其靶基因的激活,这些靶基因参与促进恶性肿瘤、转移、细胞的不规则增殖和/或它们对程序性细胞死亡的抗性。穗花杉双黄酮(AMF)是一种双黄酮,具有调节与稳态和非稳态条件相关的关键信号通路的内在能力,促使其作为抗非小细胞肺癌(NSCLC)A549细胞的治疗候选物进行探索。 目的:本研究调查AMF对A549细胞的抗癌潜力,重点关注其在抑制NF-κB和诱导凋亡方面的独特双重作用,并将其疗效与标准药物阿霉素进行比较。 材料与方法:用不同浓度的AMF处理A549细胞24小时。分析AMF对细胞增殖、氧化应激、线粒体膜电位、半胱天冬酶激活、凋亡和NF-κB激活的影响。 结果:在AMF浓度为60μM时,A549细胞活力显著降低(P<0.001)。AMF暴露进一步增加了A549细胞中的核碎片化和凝聚。AMF处理诱导凋亡,同时细胞内活性氧(ROS)产生增加、线粒体膜电位耗散和半胱天冬酶级联激活。此外,AMF介导对NF-κB的抑制,并调节参与细胞存活(Bcl-XL、Bcl-2和存活素)和增殖(细胞周期蛋白D1) 的NF-κB相关基因的表达。计算机模拟研究进一步支持了这些结果,该研究表明与标准药物(阿霉素)相比,AMF与NF-κB p65/50具有相当高的结合能得分。 结论:因此,得出结论,AMF通过直接抑制NF-κB信号传导和诱导凋亡等双重机制在NSCLC A549细胞中发挥强大的抗癌作用,再加上其高结合亲和力,使其成为NSCLC有前景的治疗候选物。需要进一步的临床前研究来验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/c18f1ab60d49/JIR-18-8657-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/e214be590231/JIR-18-8657-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/3a8af788a2df/JIR-18-8657-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/19fbde3df5b5/JIR-18-8657-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/4d0de650e622/JIR-18-8657-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/844925838a94/JIR-18-8657-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/86ff0ab2791c/JIR-18-8657-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/0becb166e4c4/JIR-18-8657-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/737ce1b98db0/JIR-18-8657-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/bf2ffcd3b548/JIR-18-8657-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/2e400ffa0632/JIR-18-8657-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/c18f1ab60d49/JIR-18-8657-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/e214be590231/JIR-18-8657-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/3a8af788a2df/JIR-18-8657-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/19fbde3df5b5/JIR-18-8657-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/4d0de650e622/JIR-18-8657-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/844925838a94/JIR-18-8657-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/86ff0ab2791c/JIR-18-8657-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/0becb166e4c4/JIR-18-8657-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/737ce1b98db0/JIR-18-8657-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/bf2ffcd3b548/JIR-18-8657-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/2e400ffa0632/JIR-18-8657-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31ae/12228500/c18f1ab60d49/JIR-18-8657-g0011.jpg

相似文献

[1]
Amentoflavone Impedes NF-κB Activation and Mediates Apoptosis Induction in Lung Cancer Cells: An in vitro and in silico exploration.

J Inflamm Res. 2025-7-1

[2]
Mahonia bealei (Fort.) Carr. Leaf extract modulates the TLR2/MyD88/NF-κB signaling pathway to inhibit PGN-induced inflammation in RAW264.7 cells.

J Ethnopharmacol. 2025-3-26

[3]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[4]
Formononetin-induced apoptosis in hepatocellular carcinoma: insights from mTOR inhibition and caspase-3 activation through in silico and in vitro approaches.

Med Oncol. 2025-6-16

[5]
Nerolidol inhibits proliferation and triggers ROS-facilitated apoptosis in lung carcinoma cells via the suppression of MAPK/STAT3/NF-κB and P13K/AKT pathways.

Adv Clin Exp Med. 2024-10-21

[6]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[7]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[8]
Novel indole Schiff base β-diiminato compound as an anti-cancer agent against triple-negative breast cancer: In vitro anticancer activity evaluation and in vivo acute toxicity study.

Bioorg Chem. 2024-11

[9]
Caveolin-1 inhibits the proliferation and invasion of lung adenocarcinoma via EGFR degradation.

Sci Rep. 2025-7-1

[10]
Alleviation of lipopolysaccharide-induced heart inflammation in poultry treated with carnosic acid via the NF-κB and MAPK pathways.

J Anim Sci. 2025-1-4

本文引用的文献

[1]
Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications.

Cells. 2024-11-6

[2]
3'-8″- Biflavones: A Review of Their Structural Diversity, Natural Occurrence, Role in Plants, Extraction and Identification.

Molecules. 2024-9-29

[3]
Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives.

Signal Transduct Target Ther. 2024-8-2

[4]
Versatile function of NF-ĸB in inflammation and cancer.

Exp Hematol Oncol. 2024-7-16

[5]
Exploring treatment options in cancer: Tumor treatment strategies.

Signal Transduct Target Ther. 2024-7-17

[6]
NF-κB in biology and targeted therapy: new insights and translational implications.

Signal Transduct Target Ther. 2024-3-4

[7]
Inhibition of NF-κB signaling unveils novel strategies to overcome drug resistance in cancers.

Drug Resist Updat. 2024-3

[8]
Corrigendum: Cucurbitacin-B instigates intrinsic apoptosis and modulates Notch signaling in androgen-dependent prostate cancer LNCaP cells.

Front Pharmacol. 2023-9-29

[9]
Nuclear factor kappa B expression in non-small cell lung cancer.

Biomed Pharmacother. 2023-11

[10]
Potential of amentoflavone with antiviral properties in COVID-19 treatment.

Asian Biomed (Res Rev News). 2021-8-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索