Suppr超能文献

MDDeep-Ace:基于多域适应的物种特异性乙酰化位点预测

MDDeep-Ace: species-specific acetylation site prediction based on multi-domain adaptation.

作者信息

Liu Yu, Ye Chaofan, Lin Can, Mao Kangkang, Zhu Ming

机构信息

School of Integrated Circuits, Anhui University, Hefei City, Anhui, China.

出版信息

PeerJ. 2025 Jul 3;13:e19649. doi: 10.7717/peerj.19649. eCollection 2025.

Abstract

BACKGROUND

Lysine post-translational modification (PTM) is pivotal in regulating diverse cellular processes, profoundly impacting protein structure and function. Over recent decades, numerous experimental techniques have advanced PTM site identification, significantly contributing to research progress. However, these methods are time-intensive and labor-intensive. Deep learning technologies have shown promise in predicting PTM sites, yet current approaches struggle with species-specific PTM site prediction.

METHODS

We introduce MDDeep-Ace, a novel deep learning method based on multi-domain adaptation for predicting lysine acetylation sites. By integrating data from multiple species, MDDeep-Ace enhances the generalization of species-specific prediction models, improving predictive performance.

RESULTS

Experimental findings illustrate that our proposed multi-domain adaptation approach significantly enhances prediction accuracy across multiple species, surpassing existing lysine acetylation site prediction tools.

摘要

背景

赖氨酸翻译后修饰(PTM)在调节多种细胞过程中起着关键作用,对蛋白质结构和功能有深远影响。近几十年来,众多实验技术推动了PTM位点鉴定的发展,为研究进展做出了重大贡献。然而,这些方法耗时且费力。深度学习技术在预测PTM位点方面显示出了潜力,但目前的方法在物种特异性PTM位点预测方面存在困难。

方法

我们引入了MDDeep-Ace,这是一种基于多域适应的新型深度学习方法,用于预测赖氨酸乙酰化位点。通过整合来自多个物种的数据,MDDeep-Ace增强了物种特异性预测模型的泛化能力,提高了预测性能。

结果

实验结果表明,我们提出的多域适应方法显著提高了多个物种的预测准确性,超过了现有的赖氨酸乙酰化位点预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de0/12229145/8abb88867429/peerj-13-19649-g001.jpg

相似文献

1
MDDeep-Ace: species-specific acetylation site prediction based on multi-domain adaptation.
PeerJ. 2025 Jul 3;13:e19649. doi: 10.7717/peerj.19649. eCollection 2025.
3
6
Unveiling the evolution of policies for enhancing protein structure predictions: A comprehensive analysis.
Comput Biol Med. 2024 Sep;179:108815. doi: 10.1016/j.compbiomed.2024.108815. Epub 2024 Jul 11.
7
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
8
ToxinPred 3.0: An improved method for predicting the toxicity of peptides.
Comput Biol Med. 2024 Sep;179:108926. doi: 10.1016/j.compbiomed.2024.108926. Epub 2024 Jul 21.
10
A deep learning model for predicting systemic lupus erythematosus-associated epitopes.
BMC Med Inform Decis Mak. 2025 Jul 1;25(1):230. doi: 10.1186/s12911-025-03056-x.

本文引用的文献

2
Assays to Study Enzymatic and Non-Enzymatic Protein Lysine Acetylation In Vitro.
Curr Protoc. 2021 Nov;1(11):e277. doi: 10.1002/cpz1.277.
3
A review of epigenetic changes in asthma: methylation and acetylation.
Clin Epigenetics. 2021 Mar 29;13(1):65. doi: 10.1186/s13148-021-01049-x.
4
DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species.
Methods. 2021 Aug;192:103-111. doi: 10.1016/j.ymeth.2020.08.003. Epub 2020 Aug 10.
5
Ligand-induced monoubiquitination of BIK1 regulates plant immunity.
Nature. 2020 May;581(7807):199-203. doi: 10.1038/s41586-020-2210-3. Epub 2020 Apr 22.
6
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
7
DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
Bioinformatics. 2020 Feb 15;36(4):1057-1065. doi: 10.1093/bioinformatics/btz721.
8
Capsule network for protein post-translational modification site prediction.
Bioinformatics. 2019 Jul 15;35(14):2386-2394. doi: 10.1093/bioinformatics/bty977.
9
Functions and mechanisms of non-histone protein acetylation.
Nat Rev Mol Cell Biol. 2019 Mar;20(3):156-174. doi: 10.1038/s41580-018-0081-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验