Suppr超能文献

Auto-Kla:一种使用自动化机器学习识别赖氨酸乳酰化位点的新型网络服务器。

Auto-Kla: a novel web server to discriminate lysine lactylation sites using automated machine learning.

作者信息

Lai Fei-Liao, Gao Feng

机构信息

Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad070.

Abstract

Recently, lysine lactylation (Kla), a novel post-translational modification (PTM), which can be stimulated by lactate, has been found to regulate gene expression and life activities. Therefore, it is imperative to accurately identify Kla sites. Currently, mass spectrometry is the fundamental method for identifying PTM sites. However, it is expensive and time-consuming to achieve this through experiments alone. Herein, we proposed a novel computational model, Auto-Kla, to quickly and accurately predict Kla sites in gastric cancer cells based on automated machine learning (AutoML). With stable and reliable performance, our model outperforms the recently published model in the 10-fold cross-validation. To investigate the generalizability and transferability of our approach, we evaluated the performance of our models trained on two other widely studied types of PTM, including phosphorylation sites in host cells infected with SARS-CoV-2 and lysine crotonylation sites in HeLa cells. The results show that our models achieve comparable or better performance than current outstanding models. We believe that this method will become a useful analytical tool for PTM prediction and provide a reference for the future development of related models. The web server and source code are available at http://tubic.org/Kla and https://github.com/tubic/Auto-Kla, respectively.

摘要

最近,赖氨酸乳酰化(Kla)作为一种可被乳酸刺激的新型翻译后修饰(PTM),已被发现可调节基因表达和生命活动。因此,准确识别Kla位点势在必行。目前,质谱分析是识别PTM位点的基本方法。然而,仅通过实验来实现这一点既昂贵又耗时。在此,我们提出了一种新型计算模型Auto-Kla,基于自动化机器学习(AutoML)快速准确地预测胃癌细胞中的Kla位点。我们的模型性能稳定可靠,在10折交叉验证中优于最近发表的模型。为了研究我们方法的通用性和可转移性,我们评估了在另外两种广泛研究的PTM类型上训练的模型性能,包括感染SARS-CoV-2的宿主细胞中的磷酸化位点和HeLa细胞中的赖氨酸巴豆酰化位点。结果表明,我们的模型比当前优秀模型具有相当或更好的性能。我们相信,这种方法将成为PTM预测的有用分析工具,并为相关模型的未来发展提供参考。网络服务器和源代码分别可在http://tubic.org/Kla和https://github.com/tubic/Auto-Kla获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验