Suppr超能文献

基于数据驱动的银铋碘钙钛矿类材料的微观结构优化

Data-driven microstructural optimization of Ag-Bi-I perovskite-inspired materials.

作者信息

Nandishwara Kshithij Mysore, Cheng Shuan, Liu Pengjun, Zhu Huimin, Guo Xiaoyu, Massabuau Fabien C-P, Hoye Robert L Z, Sun Shijing

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, WA USA.

Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK.

出版信息

NPJ Comput Mater. 2025;11(1):210. doi: 10.1038/s41524-025-01701-7. Epub 2025 Jul 3.

Abstract

Microstructural design is crucial yet challenging for thin-film semiconductors, creating barriers for new materials to achieve practical applications in photovoltaics and optoelectronics. We present the Daisy Visual Intelligence Framework (Daisy), which combines multiple AI models to learn from historical microscopic images and propose new synthesis conditions towards desirable microstructures. Daisy consists of an image interpreter to extract grain and defect statistics, and a reinforcement-learning-driven synthesis planner to optimize thin-film morphology. Using Ag-Bi-I perovskite-inspired materials as a case study, Daisy achieved over 120× and 87× acceleration in image analysis and synthesis planning, respectively, compared to manual methods. Processing parameters for AgBiI were optimized from over 1700 possible synthesis conditions within 3.5 min, yielding experimentally validated films with no visible pinholes and average grain sizes 14.5% larger than the historical mean. Our work advances computational frameworks for self-driving labs and shedding light on AI-accelerated microstructure development for emerging thin-film materials.

摘要

微观结构设计对于薄膜半导体至关重要但具有挑战性,这为新材料在光伏和光电子领域实现实际应用制造了障碍。我们提出了雏菊视觉智能框架(Daisy),它结合了多个人工智能模型,从历史微观图像中学习,并针对理想的微观结构提出新的合成条件。Daisy由一个用于提取晶粒和缺陷统计信息的图像解释器,以及一个由强化学习驱动的用于优化薄膜形态的合成规划器组成。以受银铋碘钙钛矿启发的材料为例,与手动方法相比,Daisy在图像分析和合成规划方面分别实现了超过120倍和87倍的加速。在3.5分钟内从超过1700种可能的合成条件中优化了碘化银铋的工艺参数,得到了经实验验证的无可见针孔且平均晶粒尺寸比历史平均值大14.5%的薄膜。我们的工作推动了自动驾驶实验室的计算框架发展,并为新兴薄膜材料的人工智能加速微观结构开发提供了启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed3d/12226340/53905532472d/41524_2025_1701_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验