Ross Jessica M, Forman Lily, Gogulski Juha, Hassan Umair, Cline Christopher C, Parmigiani Sara, Truong Jade, Hartford James W, Chen Nai-Feng, Fujioka Takako, Makeig Scott, Pascual-Leone Alvaro, Keller Corey J
Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California, USA.
Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA.
Hum Brain Mapp. 2025 Jul;46(10):e70267. doi: 10.1002/hbm.70267.
Transcranial magnetic stimulation (TMS) applied to the motor cortex has revolutionized the study of motor physiology in humans. Despite this, TMS-evoked electrophysiological responses show significant fluctuation, due in part to inconsistencies between TMS pulse timing and ongoing brain oscillations. Small or inconsistent responses to TMS limit mechanistic insights and clinical efficacy, necessitating the development of methods to precisely coordinate the timing of TMS pulses to the phase of relevant oscillatory activity. We introduce Sensory Entrained TMS (seTMS), a novel approach that uses musical rhythms to synchronize brain oscillations and time TMS pulses to enhance cortical excitability. Focusing on the sensorimotor alpha rhythm, a neural oscillation associated with motor cortical inhibition, we examine whether rhythm-evoked sensorimotor alpha phase alignment affects primary motor cortical (M1) excitability in healthy young adults (n = 33). We first confirmed using electroencephalography (EEG) that passive listening to musical rhythms desynchronizes inhibitory sensorimotor brain rhythms (mu oscillations) around 200 ms before auditory rhythmic events (27 participants). We then targeted this optimal time window by delivering single TMS pulses over M1 200 ms before rhythmic auditory events while recording motor-evoked potentials (MEPs; 19 participants), which resulted in significantly larger MEPs compared to standard single pulse TMS and an auditory control condition. Neither EEG measures during passive listening nor seTMS-induced MEP enhancement showed dependence on musical experience or training. These findings demonstrate that seTMS effectively enhances corticomotor excitability and establishes a practical, cost-effective method for optimizing non-invasive brain stimulation outcomes.
经颅磁刺激(TMS)应用于运动皮层,彻底改变了人类运动生理学的研究。尽管如此,TMS诱发的电生理反应仍显示出显著波动,部分原因是TMS脉冲时间与正在进行的脑振荡之间存在不一致。对TMS的小反应或不一致反应限制了对机制的理解和临床疗效,因此需要开发方法来精确地将TMS脉冲的时间与相关振荡活动的相位进行协调。我们引入了感觉诱发性TMS(seTMS),这是一种新方法,它利用音乐节奏来同步脑振荡并为TMS脉冲计时,以增强皮层兴奋性。聚焦于感觉运动α节律,一种与运动皮层抑制相关的神经振荡,我们研究了节律诱发的感觉运动α相位对齐是否会影响健康年轻成年人(n = 33)的初级运动皮层(M1)兴奋性。我们首先使用脑电图(EEG)证实,在听觉节律事件前约200毫秒被动聆听音乐节奏会使抑制性感觉运动脑节律(μ振荡)去同步(27名参与者)。然后,我们在节律性听觉事件前200毫秒通过在M1上施加单个TMS脉冲来针对这个最佳时间窗口,同时记录运动诱发电位(MEP;19名参与者),与标准单脉冲TMS和听觉对照条件相比,这导致MEP显著更大。被动聆听期间的EEG测量和seTMS诱发的MEP增强均未显示出对音乐经验或训练的依赖性。这些发现表明,seTMS有效地增强了皮质运动兴奋性,并建立了一种实用、经济高效的方法来优化非侵入性脑刺激的效果。
Hum Brain Mapp. 2025-7
bioRxiv. 2024-11-27
bioRxiv. 2025-7-27
J Neurophysiol. 2025-7-1
bioRxiv. 2025-7-27
Clin Neurophysiol. 2024-8
Hum Brain Mapp. 2024-2-1
Sci Rep. 2023-12-20
Front Neural Circuits. 2023
Biol Psychiatry Cogn Neurosci Neuroimaging. 2023-8