Suppr超能文献

绘制人类背外侧前额叶皮层的皮质兴奋性图谱。

Mapping cortical excitability in the human dorsolateral prefrontal cortex.

作者信息

Gogulski Juha, Cline Christopher C, Ross Jessica M, Truong Jade, Sarkar Manjima, Parmigiani Sara, Keller Corey J

机构信息

Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland.

Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

出版信息

Clin Neurophysiol. 2024 Aug;164:138-148. doi: 10.1016/j.clinph.2024.05.008. Epub 2024 May 27.

Abstract

BACKGROUND

Transcranial magnetic stimulation (TMS) to the dorsolateral prefrontal cortex (dlPFC) is an effective treatment for depression, but the neural effects after TMS remains unclear. TMS paired with electroencephalography (TMS-EEG) can causally probe these neural effects. Nonetheless, variability in single pulse TMS-evoked potentials (TEPs) across dlPFC subregions, and potential artifact induced by muscle activation, necessitate detailed mapping for accurate treatment monitoring.

OBJECTIVE

To characterize early TEPs anatomically and temporally (20-50 ms) close to the TMS pulse (EL-TEPs), as well as associated muscle artifacts (<20 ms), across the dlPFC. We hypothesized that TMS location and angle influence EL-TEPs, and specifically that conditions with larger muscle artifact may exhibit lower observed EL-TEPs due to over-rejection during preprocessing. Additionally, we sought to determine an optimal group-level TMS target and angle, while investigating the potential benefits of a personalized approach.

METHODS

In 16 healthy participants, we applied single-pulse TMS to six targets within the dlPFC at two coil angles and measured EEG responses.

RESULTS

Stimulation location significantly influenced observed EL-TEPs, with posterior and medial targets yielding larger EL-TEPs. Regions with high EL-TEP amplitude had less muscle artifact, and vice versa. The best group-level target yielded 102% larger EL-TEP responses compared to other dlPFC targets. Optimal dlPFC target differed across subjects, suggesting that a personalized targeting approach might boost the EL-TEP by an additional 36%.

SIGNIFICANCE

EL-TEPs can be probed without significant muscle-related confounds in posterior-medial regions of the dlPFC. The identification of an optimal group-level target and the potential for further refinement through personalized targeting hold significant implications for optimizing depression treatment protocols.

摘要

背景

经颅磁刺激(TMS)作用于背外侧前额叶皮质(dlPFC)是治疗抑郁症的一种有效方法,但TMS后的神经效应仍不清楚。TMS与脑电图(TMS-EEG)相结合可以因果性地探究这些神经效应。然而,dlPFC各亚区域单脉冲TMS诱发电位(TEP)的变异性以及肌肉激活引起的潜在伪迹,需要进行详细的图谱绘制以实现准确的治疗监测。

目的

在dlPFC区域,从解剖学和时间上(在TMS脉冲后20 - 50毫秒)表征早期TEP(EL-TEP)以及相关的肌肉伪迹(<20毫秒)。我们假设TMS的位置和角度会影响EL-TEP,具体而言,由于预处理过程中的过度剔除,肌肉伪迹较大的情况下观察到的EL-TEP可能较低。此外,我们试图确定最佳的组水平TMS靶点和角度,同时研究个性化方法的潜在益处。

方法

在16名健康参与者中,我们以两个线圈角度对dlPFC内的六个靶点施加单脉冲TMS,并测量脑电图反应。

结果

刺激位置显著影响观察到的EL-TEP,后部和内侧靶点产生的EL-TEP更大。EL-TEP振幅高的区域肌肉伪迹较少,反之亦然。与其他dlPFC靶点相比,最佳的组水平靶点产生的EL-TEP反应大102%。最佳的dlPFC靶点因个体而异,这表明个性化靶向方法可能会使EL-TEP再提高36%。

意义

在dlPFC的后内侧区域可以探测到EL-TEP,而不会受到明显的肌肉相关干扰。确定最佳的组水平靶点以及通过个性化靶向进一步优化的潜力,对优化抑郁症治疗方案具有重要意义。

相似文献

1
Mapping cortical excitability in the human dorsolateral prefrontal cortex.
Clin Neurophysiol. 2024 Aug;164:138-148. doi: 10.1016/j.clinph.2024.05.008. Epub 2024 May 27.
2
Mapping cortical excitability in the human dorsolateral prefrontal cortex.
bioRxiv. 2023 Nov 20:2023.01.20.524867. doi: 10.1101/2023.01.20.524867.
3
Reliability of transcranial magnetic stimulation evoked potentials to detect the effects of theta-burst stimulation of the prefrontal cortex.
Neuroimage Rep. 2022 Jun 21;2(3):100115. doi: 10.1016/j.ynirp.2022.100115. eCollection 2022 Sep.
4
Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses.
Prog Neuropsychopharmacol Biol Psychiatry. 2025 Jan 10;136:111167. doi: 10.1016/j.pnpbp.2024.111167. Epub 2024 Oct 9.
5
Neuroimaging-Guided TMS-EEG for Real-Time Cortical Network Mapping.
J Vis Exp. 2025 Jun 13(220). doi: 10.3791/67339.
6
Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex.
Cereb Cortex. 2024 Apr 1;34(4). doi: 10.1093/cercor/bhae130.
7
Real-time optimization to enhance noninvasive cortical excitability assessment in the human dorsolateral prefrontal cortex.
Clin Neurophysiol. 2025 Jun;174:225-234. doi: 10.1016/j.clinph.2025.02.261. Epub 2025 Mar 11.
9
Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex.
bioRxiv. 2023 Sep 5:2023.09.04.556283. doi: 10.1101/2023.09.04.556283.

引用本文的文献

1
Response prediction for repetitive transcranial magnetic stimulation treatment.
Curr Opin Psychiatry. 2025 Sep 1;38(5):334-340. doi: 10.1097/YCO.0000000000001026. Epub 2025 Jul 22.
2
Sensory Entrained TMS (seTMS) Enhances Motor Cortex Excitability.
Hum Brain Mapp. 2025 Jul;46(10):e70267. doi: 10.1002/hbm.70267.
3
Sensory Entrained TMS (seTMS) enhances motor cortex excitability.
bioRxiv. 2024 Nov 27:2024.11.26.625537. doi: 10.1101/2024.11.26.625537.
4
Theta-burst direct electrical stimulation remodels human brain networks.
Nat Commun. 2024 Aug 14;15(1):6982. doi: 10.1038/s41467-024-51443-1.
7
TMS provokes target-dependent intracranial rhythms across human cortical and subcortical sites.
Brain Stimul. 2024 May-Jun;17(3):698-712. doi: 10.1016/j.brs.2024.05.014. Epub 2024 May 30.
9
Reliability of the TMS-evoked potential in dorsolateral prefrontal cortex.
Cereb Cortex. 2024 Apr 1;34(4). doi: 10.1093/cercor/bhae130.
10
Neural effects of TMS trains on the human prefrontal cortex.
Sci Rep. 2023 Dec 20;13(1):22700. doi: 10.1038/s41598-023-49250-7.

本文引用的文献

1
Isolating sensory artifacts in the suprathreshold TMS-EEG signal over DLPFC.
Sci Rep. 2023 Apr 26;13(1):6796. doi: 10.1038/s41598-023-29920-2.
2
Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials.
Hum Brain Mapp. 2022 Dec 1;43(17):5141-5153. doi: 10.1002/hbm.25990. Epub 2022 Jun 30.
3
Database of 25 validated coil models for electric field simulations for TMS.
Brain Stimul. 2022 May-Jun;15(3):697-706. doi: 10.1016/j.brs.2022.04.017. Epub 2022 Apr 28.
4
Closed-loop optimization of transcranial magnetic stimulation with electroencephalography feedback.
Brain Stimul. 2022 Mar-Apr;15(2):523-531. doi: 10.1016/j.brs.2022.01.016. Epub 2022 Feb 14.
5
A structured ICA-based process for removing auditory evoked potentials.
Sci Rep. 2022 Jan 26;12(1):1391. doi: 10.1038/s41598-022-05397-3.
6
The rt-TEP tool: real-time visualization of TMS-Evoked Potentials to maximize cortical activation and minimize artifacts.
J Neurosci Methods. 2022 Mar 15;370:109486. doi: 10.1016/j.jneumeth.2022.109486. Epub 2022 Jan 21.
7
An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas.
Brain Struct Funct. 2022 Apr;227(3):763-778. doi: 10.1007/s00429-021-02421-6. Epub 2021 Nov 17.
8
Four electric field modeling methods of Dosing Prefrontal Transcranial Magnetic Stimulation (TMS): Introducing APEX MT dosimetry.
Brain Stimul. 2021 Jul-Aug;14(4):1032-1034. doi: 10.1016/j.brs.2021.06.012. Epub 2021 Jun 26.
9
Neurophysiological effects of repetitive transcranial magnetic stimulation (rTMS) in treatment resistant depression.
Clin Neurophysiol. 2021 Sep;132(9):2306-2316. doi: 10.1016/j.clinph.2021.05.008. Epub 2021 Jun 1.
10
Standardized measurement error: A universal metric of data quality for averaged event-related potentials.
Psychophysiology. 2021 Jun;58(6):e13793. doi: 10.1111/psyp.13793. Epub 2021 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验