Suppr超能文献

具有增强电化学催化性能的Ru@NiMoS聚集体用于增强电化学发光和利多卡因检测。

Ru@NiMoS aggregate with boosted electrochemical catalysis for enhanced electrochemiluminescence and lidocaine detection.

作者信息

Lu Yongzhuang, Wang Haoran, Li Qiyao, Liu Qian, Zhang Xiaoxu, Jia Yuying, Cai Xiangyu, Zhao Zheng, Huan Yanfu, Tang Ben Zhong

机构信息

College of Chemistry Jilin University Changchun Jilin China.

Clinical Translational Research Center of Aggregation-Induced Emission The Second Affiliated Hospital School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong China.

出版信息

Smart Mol. 2024 Sep 11;3(1):e20240011. doi: 10.1002/smo.20240011. eCollection 2025 Mar.

Abstract

A binder-free Ru@NiMoS electrode was engineered by in situ growth of two-dimensional NiMoS nanosheets on nickel foam. This process effectively promoted the electrostatic-driven aggregation of Ru(bpy) , harnessing the synergistic effect to enhance electrochemiluminescence (ECL) performance. The integration (Ru@NiMoS) achieved an impressive ECL efficiency of 70.1%, marking an impressive 36.9-fold enhancement over conventional Ru. Additionally, its ECL intensity was found to be remarkably 172.2 times greater than that of Ru. Within the Ru(bpy) /TPA system, NiMoS emerged as a pivotal electrochemical catalyst, markedly boosting both the oxygen evolution reaction and the generation of reactive intermediates. Leveraging these distinctive properties, a highly efficient ECL sensor for lidocaine detection was developed. This sensor exhibited a linear response within the concentration range of 1 nM to 1 μM and achieved a remarkably low detection limit of 0.22 nM, underlining its substantial potential for practical application.

摘要

通过在泡沫镍上原位生长二维NiMoS纳米片制备了一种无粘结剂的Ru@NiMoS电极。该过程有效地促进了Ru(bpy) 的静电驱动聚集,利用协同效应提高了电化学发光(ECL)性能。集成体(Ru@NiMoS)实现了70.1%的令人印象深刻的ECL效率,比传统Ru提高了36.9倍。此外,发现其ECL强度比Ru显著高172.2倍。在Ru(bpy)/TPA体系中,NiMoS成为关键的电化学催化剂,显著促进了析氧反应和活性中间体的生成。利用这些独特性能,开发了一种用于利多卡因检测的高效ECL传感器。该传感器在1 nM至1 μM的浓度范围内表现出线性响应,检测限低至0.22 nM,突出了其在实际应用中的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b328/12117923/03f84eb6a9b0/SMO2-3-e20240011-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验