Pavlova Evgeniya, Kunnath Radhika Nambannor, van Erp Bert, Dvirnas Albertas, Kk Sriram, Dame Remus T, Westerlund Fredrik
Division of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
QRB Discov. 2025 May 19;6:e17. doi: 10.1017/qrd.2025.10007. eCollection 2025.
Single-molecule methods offer powerful insights into DNA-protein interactions at the individual DNA molecule level. We developed an automated, high-throughput nanofluidic imaging platform to characterize DNA-protein complexes in solution. The platform uses a nanofluidic chip with 10 sets of nanochannels where thousands of DNA molecules can be simultaneously analyzed in different conditions. Using this approach, we investigate Rok, a multifunctional protein involved in genome organization and transcription regulation. Our findings confirm the DNA-condensing activity of Rok, likely attributed to its ability to bridge distant DNA segments. Additionally, Rok promotes the hybridization of 12 base complementary single-stranded DNA overhangs, suggesting a potential role in homology search during recombination. Rok also displays sequence-selective binding, preferentially associating with adenine and thymine-rich (AT-rich) DNA regions. To explore the structural features of Rok underlying these activities and test our nanofluidic system further, we compare wild-type Rok with two variants: ∆Rok, lacking the neutral part of the internal linker, and sRok, a naturally occurring variant without the linker. This comparison highlights the role of the linker in hybridization, i.e., interaction with single-stranded DNA. Together, these findings enhance our understanding of Rok-mediated DNA dynamics and establish single-molecule nanofluidics as a powerful tool for high-throughput studies of DNA-protein interactions.
单分子方法为在单个DNA分子水平上深入了解DNA与蛋白质的相互作用提供了有力的见解。我们开发了一种自动化的高通量纳米流体成像平台,用于表征溶液中的DNA-蛋白质复合物。该平台使用带有10组纳米通道的纳米流体芯片,可在不同条件下同时分析数千个DNA分子。利用这种方法,我们研究了Rok,一种参与基因组组织和转录调控的多功能蛋白质。我们的研究结果证实了Rok的DNA凝聚活性,这可能归因于它连接远距离DNA片段的能力。此外,Rok促进了12个碱基互补单链DNA突出端的杂交,这表明它在重组过程中的同源性搜索中可能发挥作用。Rok还表现出序列选择性结合,优先与富含腺嘌呤和胸腺嘧啶(富含AT)的DNA区域结合。为了探究Rok这些活性背后的结构特征,并进一步测试我们的纳米流体系统,我们将野生型Rok与两个变体进行了比较:∆Rok,缺少内部连接子的中性部分;以及sRok,一种天然存在的无连接子变体。这种比较突出了连接子在杂交中的作用,即与单链DNA的相互作用。总之,这些发现加深了我们对Rok介导的DNA动态变化的理解,并将单分子纳米流体技术确立为研究DNA-蛋白质相互作用的高通量强大工具。