Suppr超能文献

用于传染病监测的早期预警系统中的人工智能:一项系统综述。

Artificial intelligence in early warning systems for infectious disease surveillance: a systematic review.

作者信息

Villanueva-Miranda Ismael, Xiao Guanghua, Xie Yang

机构信息

Department of Health Data Science and Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, United States.

Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, United States.

出版信息

Front Public Health. 2025 Jun 23;13:1609615. doi: 10.3389/fpubh.2025.1609615. eCollection 2025.

Abstract

INTRODUCTION

Infectious diseases pose a significant global health threat, exacerbated by factors like globalization and climate change. Artificial intelligence (AI) offers promising tools to enhance crucial early warning systems (EWS) for disease surveillance. This systematic review evaluates the current landscape of AI applications in EWS, identifying key techniques, data sources, benefits, and challenges.

METHODS

Following PRISMA guidelines, a systematic search of Semantic Scholar (2018-onward) was conducted. After screening 600 records and removing duplicates and non-relevant articles, the search yielded 67 relevant studies for review.

RESULTS

Key findings reveal the prevalent use of machine learning (ML), deep learning (DL), and natural language processing (NLP), which often integrate diverse data sources (e.g., epidemiological, web, climate, wastewater). The major benefits identified include earlier outbreak detection and improved prediction accuracy. However, significant challenges persist regarding data quality and bias, model transparency (the "black box" issue), system integration difficulties, and ethical considerations such as privacy and equity.

DISCUSSION

AI demonstrates considerable potential to strengthen infectious disease EWS. Realizing this potential, however, requires concerted efforts to address data limitations, enhance model explainability, ensure ethical implementation, improve infrastructure, and foster collaboration between AI developers and public health experts.

摘要

引言

传染病对全球健康构成重大威胁,全球化和气候变化等因素使其进一步加剧。人工智能(AI)为加强疾病监测的关键早期预警系统(EWS)提供了有前景的工具。本系统综述评估了EWS中AI应用的当前状况,确定了关键技术、数据来源、益处和挑战。

方法

遵循PRISMA指南,对语义学者(2018年起)进行了系统检索。在筛选600条记录并去除重复和不相关文章后,检索得到67篇相关研究以供综述。

结果

主要发现揭示了机器学习(ML)、深度学习(DL)和自然语言处理(NLP)的普遍应用,这些技术通常整合多种数据来源(如流行病学、网络、气候、废水)。确定的主要益处包括更早检测到疫情爆发和提高预测准确性。然而,在数据质量和偏差、模型透明度(“黑箱”问题)、系统集成困难以及隐私和公平等伦理考量方面,重大挑战依然存在。

讨论

AI在加强传染病EWS方面显示出相当大的潜力。然而,要实现这一潜力,需要共同努力解决数据限制、提高模型可解释性、确保伦理实施、改善基础设施,并促进AI开发者与公共卫生专家之间的合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/733e/12230060/c20aabb2ed17/fpubh-13-1609615-g0001.jpg

相似文献

1
Artificial intelligence in early warning systems for infectious disease surveillance: a systematic review.
Front Public Health. 2025 Jun 23;13:1609615. doi: 10.3389/fpubh.2025.1609615. eCollection 2025.
4
Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review.
Biomed Eng Lett. 2025 Jun 25;15(4):717-734. doi: 10.1007/s13534-025-00486-4. eCollection 2025 Jul.
5
AML diagnostics in the 21st century: Use of AI.
Semin Hematol. 2025 Jun 16. doi: 10.1053/j.seminhematol.2025.06.002.
6
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708.
7
AI in Medical Questionnaires: Innovations, Diagnosis, and Implications.
J Med Internet Res. 2025 Jun 23;27:e72398. doi: 10.2196/72398.
9
Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis.
Soc Sci Med. 2023 Dec;338:116357. doi: 10.1016/j.socscimed.2023.116357. Epub 2023 Nov 4.

引用本文的文献

1
The 2034 FIFA World Cup in Saudi Arabia: A Catalyst for Global Health Innovation and Emergency Preparedness.
Cureus. 2025 Aug 21;17(8):e90651. doi: 10.7759/cureus.90651. eCollection 2025 Aug.

本文引用的文献

1
Explainable AI for Symptom-Based Detection of Monkeypox: a machine learning approach.
BMC Infect Dis. 2025 Mar 26;25(1):419. doi: 10.1186/s12879-025-10738-4.
3
Analysis and prediction of infectious diseases based on spatial visualization and machine learning.
Sci Rep. 2024 Nov 19;14(1):28659. doi: 10.1038/s41598-024-80058-1.
4
Role of artificial intelligence in early diagnosis and treatment of infectious diseases.
Infect Dis (Lond). 2025 Jan;57(1):1-26. doi: 10.1080/23744235.2024.2425712. Epub 2024 Nov 14.
5
Reviewing the progress of infectious disease early warning systems and planning for the future.
BMC Public Health. 2024 Nov 7;24(1):3080. doi: 10.1186/s12889-024-20537-2.
6
Drawing on the Development Experiences of Infectious Disease Surveillance Systems Around the World.
China CDC Wkly. 2024 Oct 11;6(41):1065-1074. doi: 10.46234/ccdcw2024.220.
7
The power of artificial intelligence for managing pandemics: A primer for public health professionals.
Int J Health Plann Manage. 2025 Jan;40(1):257-270. doi: 10.1002/hpm.3864. Epub 2024 Oct 27.
8
AI-based epidemic and pandemic early warning systems: A systematic scoping review.
Health Informatics J. 2024 Jul-Sep;30(3):14604582241275844. doi: 10.1177/14604582241275844.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验