Horz Philip, Härterich Natalie, Schneider Andreas, Travnicek Nicolas D, Nestl Bettina M, Kahler Ursula, Hauer Bernhard
Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, Department of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
Innophore GmbH, Am Eisernen Tor 3, 8010, Graz, Austria.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202505942. doi: 10.1002/anie.202505942. Epub 2025 Jul 17.
Terminally hydrated terpenes are highly sought-after compounds in the flavor and fragrance industries. However, their selective synthesis remains a considerable challenge in catalysis. Regioselective hydration of non-activated C─C double bonds is typically hindered by poor selectivity and low atom efficiency in conventional methods. In this study, we harness the underexplored potential of the acyclic carotenoid 1,2-hydratase from Rubrivivax gelatinosus IL144, employing it as a whole-cell biocatalyst for cofactor-independent terminal hydration of a diverse range of terpenes. This enzyme demonstrates exceptional activity across more than 20 C─C terpenes and shows notable tolerance to various functional groups, establishing it as a valuable tool for sustainable organic synthesis. We emphasize the critical influence of expression system choice in maximizing enzymatic performance, enabling high-yield transformations on the gram scale. Through a combination of homology modeling, consensus analysis, and targeted mutagenesis, essential residues involved in catalytic activity were identified. Notably, enhanced catalytic efficiency was only achievable through the epistatic effect of three specific mutations. These findings highlight the biocatalytic potential of acyclic carotenoid hydratase, offering a green and efficient route to the production of valuable tertiary alcohols.
末端水合萜类化合物是香料和香精行业中备受追捧的化合物。然而,它们的选择性合成在催化领域仍然是一个巨大的挑战。在传统方法中,未活化的碳 - 碳双键的区域选择性水合通常受到选择性差和原子效率低的阻碍。在本研究中,我们利用了来自嗜胶红假单胞菌IL144的无环类胡萝卜素1,2 - 水合酶尚未充分探索的潜力,将其用作全细胞生物催化剂,用于多种萜类化合物的无需辅因子的末端水合。这种酶在20多种碳 - 碳萜类化合物中表现出卓越的活性,并且对各种官能团具有显著的耐受性,使其成为可持续有机合成的有价值工具。我们强调了表达系统选择对最大化酶性能的关键影响,从而能够实现克级规模的高产率转化。通过同源建模、一致性分析和定向诱变的组合,确定了参与催化活性的关键残基。值得注意的是,只有通过三个特定突变的上位效应才能实现催化效率的提高。这些发现突出了无环类胡萝卜素水合酶的生物催化潜力,为生产有价值的叔醇提供了一条绿色高效的途径。