Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart-Vaihingen, Germany.
CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain.
Angew Chem Int Ed Engl. 2023 May 22;62(22):e202301607. doi: 10.1002/anie.202301607. Epub 2023 Apr 18.
Terpene cyclases offer enormous synthetic potential, given their unique ability to forge complex hydrocarbon scaffolds from achiral precursors within a single cationic rearrangement cascade. Harnessing their synthetic power, however, has proved to be challenging owing to their generally low catalytic performance. In this study, we unveiled the catalytic potential of the squalene-hopene cyclase (SHC) by harnessing its structure and dynamics. First, we synergistically tailored the active site and entrance tunnel of the enzyme to generate a 397-fold improved (-)-ambroxide synthase. Our computational investigations explain how the introduced mutations work in concert to improve substrate acquisition, flow, and chaperoning. Kinetics, however, showed terpene-induced inactivation of the membrane-bound SHC to be the major turnover limitation in vivo. Merging this insight with the improved and stereoselective catalysis of the enzyme, we applied a feeding strategy to exceed 10 total turnovers. We believe that our results may bridge the gap for broader application of SHCs in synthetic chemistry.
萜类环化酶具有独特的能力,能够在单个阳离子重排级联中从前手性前体中构建复杂的碳氢骨架,因此具有巨大的合成潜力。然而,由于其催化性能普遍较低,利用其合成能力一直具有挑战性。在这项研究中,我们通过利用 squalene-hopene cyclase (SHC) 的结构和动力学揭示了其催化潜力。首先,我们协同修饰了酶的活性位点和入口隧道,从而产生了 397 倍提高的 (-)-ambroxide 合酶。我们的计算研究解释了引入的突变如何协同作用以提高底物的获取、流动和分子伴侣的作用。然而,动力学研究表明,萜类诱导的膜结合 SHC 失活是体内主要的周转限制因素。将这一见解与酶的改进和立体选择性催化相结合,我们应用了一种进料策略,使总转化率超过 10 次。我们相信,我们的研究结果可能为更广泛地将 SHC 应用于合成化学铺平道路。