Suppr超能文献

用于冷冻电镜显微照片中可通用颗粒挑选的自监督学习

Self-supervised learning for generalizable particle picking in cryo-EM micrographs.

作者信息

Zamanos Andreas, Koromilas Panagiotis, Bouritsas Giorgos, Kastritis Panagiotis L, Panagakis Yannis

机构信息

Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece; Archimedes Unit, Athena Research Center, 15125 Athens, Greece.

Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Athens, Greece.

出版信息

Cell Rep Methods. 2025 Jul 21;5(7):101089. doi: 10.1016/j.crmeth.2025.101089. Epub 2025 Jul 7.

Abstract

We present cryoelectron microscopy masked autoencoder (cryo-EMMAE), a self-supervised method designed to overcome the need for manually annotated cryo-EM data. cryo-EMMAE leverages the representation space of a masked autoencoder to pick particle pixels through clustering of the MAE latent representation. Evaluation across different EMPIAR datasets demonstrates that cryo-EMMAE outperforms state-of-the-art supervised methods in terms of generalization capabilities. Importantly, our method showcases consistent performance, independent of the dataset used for training. Additionally, cryo-EMMAE is data efficient, as we experimentally observe that it converges with as few as five micrographs. Further, 3D reconstruction results indicate that our method has superior performance in reconstructing the volumes in both single-particle datasets and multi-particle micrographs derived from cell extracts. Our results underscore the potential of self-supervised learning in advancing cryo-EM image analysis, offering an alternative for more efficient and cost-effective structural biology research. Code is available at https://github.com/azamanos/Cryo-EMMAE.

摘要

我们提出了冷冻电子显微镜掩码自动编码器(cryo-EMMAE),这是一种旨在克服对人工注释冷冻电子显微镜数据需求的自监督方法。cryo-EMMAE利用掩码自动编码器的表示空间,通过对MAE潜在表示进行聚类来挑选粒子像素。在不同的EMPIAR数据集上进行的评估表明,cryo-EMMAE在泛化能力方面优于当前最先进的监督方法。重要的是,我们的方法展示了一致的性能,与用于训练的数据集无关。此外,cryo-EMMAE具有数据高效性,因为我们通过实验观察到它只需少至五张显微照片就能收敛。此外,三维重建结果表明,我们的方法在重建单粒子数据集和源自细胞提取物的多粒子显微照片中的体积方面具有卓越性能。我们的结果强调了自监督学习在推进冷冻电子显微镜图像分析方面的潜力,为更高效且经济高效的结构生物学研究提供了一种替代方法。代码可在https://github.com/azamanos/Cryo-EMMAE获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3878/12296464/5d421892947d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验