Yamazaki Hiroshi, Shimizu Makiko
Laboratory of Drug Metabolism and Pharmacokinetics,Showa Pharmaceutical University, 3-2-1 Higashi-tamagawa Gakuen,Machida ,Tokyo194-8543, Japan.
Chem Res Toxicol. 2025 Jul 21;38(7):1157-1166. doi: 10.1021/acs.chemrestox.5c00157. Epub 2025 Jul 8.
Toxicological evaluation of industrial chemicals with a broad range of chemical structures, for example, bioactive food components, toxic food-derived compounds, and drugs, usually involves the estimation of human clearance by allometric extrapolation of traditionally determined rat profiles. Three general methods are used to utilize and expand observed time-dependent plasma concentration data after single oral doses of chemicals: empirical standard noncompartmental analysis, compartmental modeling, and physiologically based pharmacokinetic (PBPK) modeling. Application of the PBPK model for forward dosimetry (from external to internal concentrations) following oral administrations has recently been simplified by using -generated input parameters to evaluate internal exposures in humans without reference to any experimental data. Human PBPK model input parameters for a diverse range of compounds have been successfully estimated by using -generated chemical descriptors and machine learning tools. Key values for the fraction absorbed × intestinal availability, the absorption constant, the volume of systemic circulation, and the hepatic intrinsic clearance can be generated using mathematical equations to estimate values for sets of approximately 30 physicochemical properties or descriptors. After virtual oral dosing of more than 350 compounds, the plasma and liver concentrations generated by PBPK models (1) using traditionally determined input parameters and (2) using input parameters estimated were correlated in rat models and human models. This approach to pharmacokinetic modeling could potentially be applied in the clinical setting and during computational toxicological assessment of the potential risks of a wide range of general chemicals.
对具有广泛化学结构的工业化学品进行毒理学评估,例如生物活性食品成分、有毒的食物衍生化合物和药物,通常涉及通过对传统测定的大鼠数据进行异速外推来估计人体清除率。单次口服化学品后,有三种常用方法用于利用和扩展观察到的随时间变化的血浆浓度数据:经验标准非房室分析、房室建模和基于生理的药代动力学(PBPK)建模。最近,通过使用生成的输入参数来评估人体内部暴露,而无需参考任何实验数据,简化了口服给药后PBPK模型在前向剂量测定(从外部浓度到内部浓度)中的应用。通过使用生成的化学描述符和机器学习工具,已成功估计了多种化合物的人体PBPK模型输入参数。吸收分数×肠道可利用性、吸收常数、体循环容积和肝脏内在清除率的关键值可以通过数学方程生成,以估计大约30组物理化学性质或描述符的值。在对350多种化合物进行虚拟口服给药后,PBPK模型(1)使用传统确定的输入参数和(2)使用估计的输入参数生成的血浆和肝脏浓度在大鼠模型和人体模型中具有相关性。这种药代动力学建模方法可能潜在地应用于临床环境以及对多种一般化学品潜在风险的计算毒理学评估中。