Suppr超能文献

使用机器学习和生理药代动力学(PBPK)模型研究[药物名称]的药代动力学特征。 注:原文中“Investigating pharmacokinetic profiles of using...”表述不完整,缺少具体所研究药物等关键信息,这里补充了[药物名称]使译文更通顺合理。

Investigating pharmacokinetic profiles of using machine learning and PBPK modelling.

作者信息

Pumkathin Siriwan, Hanlumyuang Yuranan, Wattanathana Worawat, Laomettachit Teeraphan, Liangruksa Monrudee

机构信息

Department of Sustainable Energy and Resources Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand.

Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand.

出版信息

J Biopharm Stat. 2025;35(4):588-603. doi: 10.1080/10543406.2024.2358797. Epub 2024 Jun 11.

Abstract

Physiologically based pharmacokinetic (PBPK) modeling serves as a valuable tool for determining the distribution and disposition of substances in the body of an organism. It involves a mathematical representation of the interrelationships among crucial physiological, biochemical, and physicochemical parameters. A lack of the values of pharmacokinetic parameters can be challenging in constructing a PBPK model. Herein, we propose an artificial intelligence framework to evaluate a key pharmacokinetic parameter, the intestinal effective permeability (). The publicly available dataset was utilized to develop regression machine learning models. The XGBoost model demonstrates the best test accuracy of -squared (, coefficient of determination) of 0.68. The model is then applied to compute the of asiaticoside and madecassoside, the parent compounds found in . Subsequently, PBPK modeling was conducted to evaluate the biodistribution of the herbal substances following oral administration in a rat model. The simulation results were evaluated and validated, which agreed with the existing studies in rats. This pipeline presents a potential approach for investigating the pharmacokinetic parameters and profiles of drugs or herbal substances, which can be used independently or integrated into other modeling systems.

摘要

基于生理的药代动力学(PBPK)建模是确定物质在生物体体内分布和处置的一种有价值的工具。它涉及对关键生理、生化和物理化学参数之间相互关系的数学表示。在构建PBPK模型时,缺乏药代动力学参数值可能具有挑战性。在此,我们提出一个人工智能框架来评估一个关键的药代动力学参数,即肠道有效渗透率()。利用公开可用的数据集开发回归机器学习模型。XGBoost模型展示了最佳的测试准确率,决定系数()为0.68。然后将该模型应用于计算积雪草苷和羟基积雪草苷(中的母体化合物)的。随后,进行PBPK建模以评估大鼠模型口服给药后草药物质的生物分布。对模拟结果进行了评估和验证,其与大鼠的现有研究结果一致。这条管道提出了一种研究药物或草药物质药代动力学参数和特征的潜在方法,其可独立使用或集成到其他建模系统中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验