Hu Jianyang, Liu Bin, Feng Jianan, Chen Chen, Wang Lei, Wang Yiqun, Lin Jie, Jin Peng
Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China.
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
Microsyst Nanoeng. 2025 Jul 8;11(1):136. doi: 10.1038/s41378-025-01001-6.
Panoramic perception, as a technology for comprehensive information acquisition, is a fascinating research topic across various disciplines. Acoustic, being one of the most familiar channels for human information conveyance, holds considerable potential for harnessing in panoramic perception. In nature, the spider is able to sense acoustic-induced air particle motion using a slender web. The unique acoustic response mechanism approaches maximum physical efficiency, which is much better than all previously known acoustic responsiveness of tympanic membranes. Herein, inspired by such unique structural and functional features of the spider auditory system, we propose a bio-inspired web-like structure that exhibits superior mechanical compliance (23.6 ~ 0.016 μm/Pa), high sensitivity (9.36 mm/s/Pa @100 Hz), excellent low-frequency response (10 Hz in experiment, 1 Hz in simulation), fine frequency resolution (0.05 Hz) and inherent directionality to acoustic. These excellent features demonstrate that the bio-inspired web-like structure is well-suited for high-performance acoustic detection and holds potential for panoramic acoustic perception. Meanwhile, the sensing system demonstrates promise in automatic driving, disaster monitoring and early warning, human-computer interaction, national defense security, etc.
全景感知作为一种用于综合信息获取的技术,是跨学科的一个引人入胜的研究课题。声学作为人类信息传递最熟悉的渠道之一,在全景感知中具有巨大的应用潜力。在自然界中,蜘蛛能够利用细长的蛛网感知由声音引起的空气粒子运动。这种独特的声学响应机制接近最大物理效率,比以前已知的所有鼓膜的声学响应性都要好得多。在此,受蜘蛛听觉系统这种独特的结构和功能特征的启发,我们提出了一种仿生蛛网结构,它具有卓越的机械柔顺性(23.6 ~ 0.016 μm/Pa)、高灵敏度(100 Hz时为9.36 mm/s/Pa)、出色的低频响应(实验中为10 Hz,模拟中为1 Hz)、精细的频率分辨率(0.05 Hz)以及对声音的固有方向性。这些优异特性表明,这种仿生蛛网结构非常适合高性能声学检测,并具有全景声学感知的潜力。同时,该传感系统在自动驾驶、灾害监测与预警、人机交互、国防安全等领域展现出应用前景。