Suppr超能文献

用于改善并网光伏系统性能的逆变器控制中强化学习与人工神经网络的对比分析

Comparative analysis of reinforcement learning and artificial neural networks for inverter control in improving the performance of grid-connected photovoltaic systems.

作者信息

Abdelwahab Saad A Mohamed, Khairy Hossam Eldin, Yousef Hossam, Abdafatah Samia, Mohamed Moayed

机构信息

Department of Electrical, Faculty of Technology and Education, Suez University, P.O.Box: 43221, Suez, Egypt.

Electrical Technology Department, Faculty of Technology and Education, Helwan University, Helwan, 11795, Egypt.

出版信息

Sci Rep. 2025 Jul 8;15(1):24477. doi: 10.1038/s41598-025-09507-9.

Abstract

This research aims to explore the potential applications of artificial intelligence (AI) methods, such as reinforcement learning (RL) and artificial neural networks (ANN), in controlling inverter systems and enhancing the performance of photovoltaic (PV) systems. PV systems are essential for producing sustainable energy, as they improve the reliability and efficiency of renewable power resources by utilizing AI to control inverters. This study examines the application of AI techniques to manage PV systems, given the increasing importance of energy generation through PV systems on a global scale. The goal of the project is to investigate the potential applications of RL algorithms for achieving maximum power point tracking (MPPT) and managing PV system maintenance and operation. According to the results, control of the inverter by RL yields better results than the ANN controller in all cases. Globally, increasing the use of PV systems for energy generation is a top goal to satisfy rising energy demands sustainably. By improving efficiency and dependability, AI control of PV systems helps to meet this challenge and further efforts in environmental sustainability and energy security. In terms of efficiency, reliability, and overall system performance, the research findings demonstrate that RL-based control of inverters outperforms ANN controllers. This comparison highlights how well RL works to control PV systems adaptively and efficiently in various environmental conditions. Total Harmonic Distortion (THD) for both current and voltage is compared and evaluated under ramp and random conditions. The results show that by consistently achieving reduced THD values, the RL controller outperforms the ANN controller in both dynamic and uncertain scenarios. This study reveals that RL exhibits superior adaptability and achieves lower THD compared to ANN, particularly under varying operational conditions. This comparative analysis fills a significant research gap, as comprehensive evaluations of this nature have not been adequately addressed in previous works. These results highlight how RL approaches may increase the dependability and efficiency of PV systems, advancing sustainable energy technology.

摘要

本研究旨在探索人工智能(AI)方法,如强化学习(RL)和人工神经网络(ANN),在控制逆变器系统以及提升光伏(PV)系统性能方面的潜在应用。光伏系统对于生产可持续能源至关重要,因为它们通过利用人工智能控制逆变器来提高可再生能源的可靠性和效率。鉴于全球范围内通过光伏系统发电的重要性日益增加,本研究考察了人工智能技术在管理光伏系统中的应用。该项目的目标是研究强化学习算法在实现最大功率点跟踪(MPPT)以及管理光伏系统维护和运行方面的潜在应用。根据结果,在所有情况下,通过强化学习控制逆变器比人工神经网络控制器能产生更好的效果。在全球范围内,增加光伏系统用于发电是可持续满足不断增长的能源需求的首要目标。通过提高效率和可靠性,对光伏系统进行人工智能控制有助于应对这一挑战,并在环境可持续性和能源安全方面做出进一步努力。在效率、可靠性和整体系统性能方面,研究结果表明基于强化学习的逆变器控制优于人工神经网络控制器。这种比较凸显了强化学习在各种环境条件下自适应且高效地控制光伏系统的良好效果。在斜坡和随机条件下对电流和电压的总谐波失真(THD)进行了比较和评估。结果表明,通过持续实现更低的THD值,强化学习控制器在动态和不确定场景中均优于人工神经网络控制器。本研究表明,与人工神经网络相比,强化学习具有更强的适应性,并且能实现更低的THD,尤其是在不同的运行条件下。这种比较分析填补了一个重大的研究空白,因为此前的研究工作尚未充分涉及此类全面评估。这些结果凸显了强化学习方法如何能够提高光伏系统的可靠性和效率,推动可持续能源技术发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1adf/12238308/29da51d4d812/41598_2025_9507_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验