基于深度学习的乳腺导管癌风险分层:使用乳房X线摄影和简化乳腺磁共振成像

Deep learning-based risk stratification of ductal carcinoma using mammography and abbreviated breast magnetic resonance imaging.

作者信息

Zhang Tingfeng, Cui Tingting, Cao Zhenjie, Hu Jintao, Ma Jie

机构信息

Division of Breast Surgery, Department of General Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.

Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.

出版信息

Front Oncol. 2025 Jun 24;15:1587882. doi: 10.3389/fonc.2025.1587882. eCollection 2025.

Abstract

BACKGROUND

Current management of ductal carcinoma in situ lacks robust risk stratification tools, leading to universal surgical and radiotherapy interventions despite heterogeneous progression risks. Optimizing therapeutic balance remains a critical unmet clinical need.

MATERIALS AND METHODS

We retrospectively analyzed two patient cohorts. The first included 173 cases with BI-RADS category 3 or higher findings, used to compare the diagnostic accuracy of four abbreviated MRI protocols against the full diagnostic MRI. The second cohort involved 210 patients who had both mammography and abbreviated MRI. We developed two separate predictive models-one for pure ductal carcinoma in situ and another for invasive ductal carcinoma with associated ductal carcinoma in situ-by integrating clinical, imaging, and pathological features. Deep learning and natural language processing techniques were used to extract relevant features, and model performance was assessed using bootstrap validation.

RESULTS

Abbreviated Magnetic Resonance Imaging protocols demonstrated similar diagnostic accuracy to the full protocol (P > 0.05), offering a faster yet effective imaging option. The pure group incorporated features like nuclear grade, calcification morphology, and lesion size, achieving an Area Under the Curve of 0.905, with 86.8% accuracy and an F1 score of 0.853. The model for invasive cases incorporated features Ki-67 status, lymph vascular invasion, and enhancement patterns, achieved an Area Under the Curve of 0.880, with 86.2% accuracy and an F1 score of 0.834. Both models showed good calibration and clinical utility, as confirmed by bootstrap resampling and decision curve analysis.

CONCLUSION

Deep Learning-driven multimodal models enable precise ductal carcinoma risk stratification, addressing overtreatment challenges. abbreviated Magnetic Resonance Imaging achieves diagnostic parity with full diagnostic protocol, positioning Magnetic Resonance Imaging as a viable ductal carcinoma screening modality.

摘要

背景

目前导管原位癌的管理缺乏强有力的风险分层工具,导致尽管进展风险存在异质性,但仍普遍采用手术和放射治疗干预措施。优化治疗平衡仍然是一项关键的未满足的临床需求。

材料和方法

我们回顾性分析了两个患者队列。第一个队列包括173例BI-RADS 3类或更高结果的病例,用于比较四种简化MRI方案与全诊断MRI的诊断准确性。第二个队列涉及210例同时进行了乳腺X线摄影和简化MRI的患者。我们通过整合临床、影像和病理特征,开发了两个独立的预测模型——一个用于纯导管原位癌,另一个用于伴有导管原位癌的浸润性导管癌。使用深度学习和自然语言处理技术提取相关特征,并使用自助验证评估模型性能。

结果

简化磁共振成像方案显示出与全方案相似的诊断准确性(P>0.05),提供了一种更快但有效的成像选择。纯导管原位癌组纳入了核分级、钙化形态和病变大小等特征,曲线下面积为0.905,准确率86.8%,F1分数为0.853。浸润性病例模型纳入了Ki-67状态、淋巴管浸润及强化模式等特征,曲线下面积为0.880,准确率86.2%,F1分数为0.834。自助重采样和决策曲线分析证实,两个模型均显示出良好的校准和临床实用性。

结论

深度学习驱动的多模态模型能够实现精确的导管癌风险分层,解决过度治疗的挑战。简化磁共振成像与全诊断方案具有相同的诊断效果,使磁共振成像成为一种可行的导管癌筛查方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c9d/12234545/ed8b1294f641/fonc-15-1587882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索