Suppr超能文献

一种用于预测儿童克罗恩病小肠黏膜愈合情况的列线图。

A nomogram for predicting small bowel mucosal healing in pediatric Crohn's disease.

作者信息

Chen Bingxia, Li Huiwen, Wang Hongli, Ren Lu, Xiong Liya, Cheng Yang, Li Rui, Cao Meiwan, Zeng Zihuan, Gong Sitang, Chen Peiyu, Geng Lanlan

机构信息

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

出版信息

Front Med (Lausanne). 2025 Jun 24;12:1582238. doi: 10.3389/fmed.2025.1582238. eCollection 2025.

Abstract

OBJECTIVES

According to the updated Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE-II), mucosal healing (MH) is the long-term therapeutic target for Crohn's disease (CD). Capsule endoscopy (CE) is effective in evaluating small bowel mucosal inflammation. This research seeks to construct a simple tool for predicting small bowel MH in pediatric CD to aid clinical decision-making.

METHODS

Data from the medical records of patients with CD who underwent CE at the Guangzhou Women and Children's Medical Center between November 2017 and July 2022 were retrospectively analyzed. The least absolute shrinkage and selection operator (LASSO) logistic regression algorithm was applied to identify predictive factors for small bowel MH. A nomogram incorporating these factors was constructed to predict the probability of MH in this population.

RESULTS

In total, 143 CE examinations performed in 91 pediatric CD patients (median age, 11 years) were included. Based on the Lewis scores, the CD patients were divided into "MH" (42 cases) and "non-MH" groups (101 cases). LASSO regression analysis identified erythrocyte sedimentation rate, albumin levels, aspartate transaminase levels, C-reactive protein levels, platelet count, and lymphocyte percentage as the most significant predictors; and thus, these factors were incorporated into the predictive nomogram model. The area under the receiver-operating characteristic (ROC) curve of the predictive nomogram model was 0.855 (95% confidence interval, 0.783-0.926), suggesting a high discrimination power.

CONCLUSION

A nomogram was constructed to predict small bowel MH in pediatric CD patients. This nomogram model can enable accurate and simple attentive observation of small bowel inflammation in CD patients.

摘要

目的

根据更新后的炎症性肠病治疗靶点选择(STRIDE-II),黏膜愈合(MH)是克罗恩病(CD)的长期治疗目标。胶囊内镜(CE)在评估小肠黏膜炎症方面有效。本研究旨在构建一种简单工具来预测儿童CD患者的小肠MH,以辅助临床决策。

方法

回顾性分析2017年11月至2022年7月在广州妇女儿童医疗中心接受CE检查的CD患者的病历数据。应用最小绝对收缩和选择算子(LASSO)逻辑回归算法识别小肠MH的预测因素。构建包含这些因素的列线图以预测该人群中MH的概率。

结果

共纳入91例儿童CD患者(中位年龄11岁)的143次CE检查。根据Lewis评分,将CD患者分为“MH”组(42例)和“非MH”组(101例)。LASSO回归分析确定红细胞沉降率、白蛋白水平、天冬氨酸转氨酶水平、C反应蛋白水平、血小板计数和淋巴细胞百分比为最显著的预测因素;因此,这些因素被纳入预测列线图模型。预测列线图模型的受试者操作特征(ROC)曲线下面积为0.855(95%置信区间,0.783 - 0.926),表明具有较高的区分能力。

结论

构建了一种列线图用于预测儿童CD患者的小肠MH。该列线图模型能够对CD患者的小肠炎症进行准确且简单的密切观察。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c90a/12234516/4dfdf8f16ae7/fmed-12-1582238-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验