Cheng Yu-Chen, Gu Hyemin, McDonald Thomas O, Wu Wenbo, Tripathi Shubham, Guarducci Cristina, Russo Douglas, Abravanel Daniel L, Bailey Madeline, Wang Yue, Zhang Yun, Pantazis Yannis, Levine Herbert, Jeselsohn Rinath, Katsoulakis Markos A, Michor Franziska
Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
bioRxiv. 2025 Jul 3:2025.06.27.662030. doi: 10.1101/2025.06.27.662030.
Single-cell RNA sequencing captures static snapshots of gene expression but lacks the ability to track continuous gene expression dynamics over time. To overcome this limitation, we developed PROFET (Particle-based Reconstruction Of generative Force-matched Expression Trajectories), a computational framework that reconstructs continuous, nonlinear single-cell gene expression trajectories from sparsely sampled scRNA-seq data. PROFET first generates particle flows between time-stamped samples using a novel Lipschitz-regularized gradient flow approach and then learns a global vector field for trajectory reconstruction using neural force-matching. The framework was developed using synthetic data simulating cell state transitions and subsequently validated on both mouse and human datasets. We then deployed PROFET to investigate heterogeneity in treatment responses to palbociclib, a CDK4/6 inhibitor, in hormone receptor positive breast cancer. By comparing newly generated scRNA-seq data from a palbociclib-resistant breast cancer cell line with published patient-derived datasets, we identified a subpopulation of patient cells exhibiting profound phenotypic shifts in response to treatment, along with surface markers uniquely enriched in those cells. By recovering temporal information from static snapshots, PROFET enables inference of continuous single-cell expression trajectories, providing a powerful tool for dissecting the heterogeneity of cell state transitions in treatment responses.
单细胞RNA测序能够捕捉基因表达的静态快照,但缺乏追踪基因表达随时间连续动态变化的能力。为了克服这一局限性,我们开发了PROFET(基于粒子的生成力匹配表达轨迹重建),这是一个计算框架,可从稀疏采样的单细胞RNA测序数据中重建连续、非线性的单细胞基因表达轨迹。PROFET首先使用一种新颖的李普希茨正则化梯度流方法在带时间戳的样本之间生成粒子流,然后使用神经力匹配学习用于轨迹重建的全局向量场。该框架是使用模拟细胞状态转变的合成数据开发的,随后在小鼠和人类数据集上进行了验证。然后,我们应用PROFET来研究激素受体阳性乳腺癌中对细胞周期蛋白依赖性激酶4/6(CDK4/6)抑制剂哌柏西利治疗反应的异质性。通过将来自哌柏西利耐药乳腺癌细胞系的新生成的单细胞RNA测序数据与已发表的患者来源数据集进行比较,我们鉴定出了一部分患者细胞亚群,它们在治疗反应中表现出深刻的表型变化,以及在这些细胞中独特富集的表面标志物。通过从静态快照中恢复时间信息,PROFET能够推断连续的单细胞表达轨迹,为剖析治疗反应中细胞状态转变的异质性提供了一个强大的工具。