Sharma Pushkal, Keys Heather R, Müller Sebastian, Pires Ivan S, Mansell Ryan, Imada Shinya, Kunchok Tenzin, Waite Millenia, Ausler Christalyn, Yuan Bingbing, Deik Amy, Hammond Paula T, Rodriguez Raphaël, Henry Whitney, Jain Ankur
Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
bioRxiv. 2025 Jul 2:2025.06.30.662349. doi: 10.1101/2025.06.30.662349.
Polyamines are essential and evolutionarily conserved metabolites present at millimolar concentrations in mammalian cells. Cells tightly regulate polyamine homeostasis through complex feedback mechanisms, yet the precise role necessitating this regulation remains unclear. Here, we show that polyamines function as endogenous buffers of redox-active iron, providing a molecular link between polyamine metabolism and ferroptosis. Using genome-wide CRISPR screens, we identified a synthetic lethal dependency between polyamine depletion and the key ferroptosis suppressor, GPX4. Mechanistically, we show that polyamine deficiency triggers a redistribution of cellular iron, increasing the labile iron pool and upregulating ferritin. To directly visualize this iron buffering in living cells, we developed a genetically encoded fluorescent reporter for redox-active iron. Live-cell analysis revealed a striking inverse correlation between intracellular polyamine levels and redox-active iron at single-cell resolution. These findings reposition polyamines as key regulators of iron homeostasis, with implications for ferroptosis-linked disease states and cellular redox balance.
多胺是哺乳动物细胞中以毫摩尔浓度存在的必需且在进化上保守的代谢物。细胞通过复杂的反馈机制严格调节多胺稳态,然而这种调节所必需的确切作用仍不清楚。在此,我们表明多胺作为氧化还原活性铁的内源性缓冲剂,在多胺代谢和铁死亡之间提供了分子联系。利用全基因组CRISPR筛选,我们确定了多胺耗竭与关键铁死亡抑制因子GPX4之间的合成致死依赖性。从机制上讲,我们表明多胺缺乏会引发细胞内铁的重新分布,增加不稳定铁池并上调铁蛋白。为了在活细胞中直接观察这种铁缓冲作用,我们开发了一种用于氧化还原活性铁的基因编码荧光报告基因。活细胞分析揭示了在单细胞分辨率下细胞内多胺水平与氧化还原活性铁之间存在显著的负相关。这些发现将多胺重新定位为铁稳态的关键调节因子,对与铁死亡相关的疾病状态和细胞氧化还原平衡具有重要意义。