Genner Rylee M, Meredith Melissa, Moller Abraham, Weller Cory, Daida Kensuke, Ayuketah Alexis, Jerez Pilar Alvarez, Akeson Stuart, Malik Laksh, Baker Breeana, Kouam Cedric, Paquette Kimberly, Marenco Stefano, Auluck Pavan, Mandal Ajeet, Paten Benedict, Reed Xylena, Jain Miten, Cookson Mark R, Singleton Andrew B, Nalls Mike, Blauwendraat Cornelis, Billingsley Kimberley J
Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
bioRxiv. 2025 Jul 2:2025.07.01.662592. doi: 10.1101/2025.07.01.662592.
The gene encodes a key lipid transport protein and plays a central role in Alzheimer's disease (AD) pathogenesis. Three common alleles, ε2 (rs7412(C>T), ε3 (reference), and ε4 (rs429358(T>C)), arise from two coding variants in exon 4 and confer distinct AD risk profiles, with ε4 increasing risk and ε2 providing protection. The ε3-linked variant rs769455[T] has also been associated with elevated AD risk in individuals of African ancestry carrying both rs769455[T] and ε4 alleles. These single nucleotide variants (SNVs) reside in a cytosine-phosphate-guanine (CpG) island, which is a region with a higher frequency of CpG sites compared to the rest of the genome. CpG sites are subject to 5-methylcytosine (5mC) methylation by DNA methyltransferases which add a methyl group to the fifth carbon on the cytosine residue of a CpG site. The presence of SNVs can disrupt this process, making these regions prime targets for differential methylation; however, allele-specific methylation patterns in remain poorly resolved due to technical limitations of conventional bisulfite and methylation array based methods, including degraded DNA quality, sparse CpG coverage, and lack of haplotype phasing. Here, we leverage high-accuracy long-read sequencing data to generate haplotype-resolved methylation profiles of the locus in 332 postmortem brain samples from two ancestrally different cohorts. This includes 201 individuals of European ancestry from the North American Brain Expression Consortium (NABEC), comprising 402 haplotypes (48 ε2 and 58 ε4 alleles), and 131 individuals of African and African admixed ancestry from the Human Brain Core Collection (HBCC), comprising 262 haplotypes (25 ε2, 64 ε4, and 7 rs769455 alleles). A linear regression analysis identified 18 novel differentially methylated CpG sites (DMCs) associated with ε2, ε4, and rs769455 within a gene cluster spanning and . This represents the most comprehensive haplotype-resolved methylation study of in human brain tissue to date. Our results uncover distinct allele-specific methylation signatures and demonstrate the power of long-read sequencing for resolving epigenetic variation relevant to AD risk.
该基因编码一种关键的脂质转运蛋白,在阿尔茨海默病(AD)发病机制中起核心作用。三个常见等位基因,ε2(rs7412(C>T))、ε3(参考等位基因)和ε4(rs429358(T>C)),源于外显子4中的两个编码变体,赋予不同的AD风险特征,其中ε4增加风险,ε2提供保护。与ε3连锁的变体rs769455[T]也与携带rs769455[T]和ε4等位基因的非洲血统个体的AD风险升高有关。这些单核苷酸变体(SNV)位于一个胞嘧啶-磷酸-鸟嘌呤(CpG)岛中,该区域与基因组的其他部分相比,CpG位点的频率更高。CpG位点会被DNA甲基转移酶甲基化为5-甲基胞嘧啶(5mC),DNA甲基转移酶会在CpG位点的胞嘧啶残基的第五个碳原子上添加一个甲基。SNV的存在会破坏这个过程,使这些区域成为差异甲基化的主要靶点;然而,由于传统亚硫酸氢盐和基于甲基化阵列的方法存在技术局限性,包括DNA质量降解、CpG覆盖稀疏以及缺乏单倍型分型,该基因座的等位基因特异性甲基化模式仍未得到很好的解析。在这里我们利用高精度长读长测序数据,在来自两个不同祖先队列的332个死后脑样本中生成该基因座的单倍型解析甲基化图谱。这包括来自北美脑表达联盟(NABEC) 的201名欧洲血统个体,包含402个单倍型(48个ε2和58个ε4等位基因),以及来自人类脑核心样本库(HBCC)的131名非洲和非洲混合血统个体,包含262个单倍型(25个ε2、64个ε4和7个rs769455等位基因)。线性回归分析在跨越该基因座的一个基因簇内鉴定出18个与ε2、ε4和rs769455相关的新的差异甲基化CpG位点(DMC)。这是迄今为止在人类脑组织中对该基因座进行的最全面的单倍型解析甲基化研究。我们的结果揭示了不同的等位基因特异性甲基化特征,并证明了长读长测序在解析与AD风险相关的表观遗传变异方面的能力。