Sidhwani Pragya, Schwartz Jacob P, Fryer Kelsey A, Straight Aaron F
Department of Biochemistry, Stanford University School of Medicine.
Department of Molecular and Cellular Physiology, Stanford University.
bioRxiv. 2025 Jul 4:2025.07.01.662447. doi: 10.1101/2025.07.01.662447.
Centromeres are essential chromosomal regions that ensure accurate genome segregation during cell division. They are organized into epigenetically discrete compartments: a Centromere Protein A (CENP-A)-rich core for microtubule attachment and surrounding heterochromatic pericentromeres that promote cohesion. Despite their importance, the mechanisms that define, enforce and partition these chromatin domains remain poorly understood. To address this, we disrupted key H3K9 methyltransferases- SUV39H1, SUV39H2, and SETDB1- that establish heterochromatin in humans. We find that SETDB1 is required for H3K9 dimethylation at core centromeres, while SUV39H1/2 complete trimethylation. Unexpectedly, depleting all three enzymes results in aberrantly high H3K9me3, driving CENP-A expansion into pericentromeres. This promiscuous deposition is mediated by G9a/GLP methyltransferases, which selectively reestablish H3K9me3 within the centromere core. SETDB1, regardless of its enzymatic activity, blocks G9a/GLP-mediated heterochromatin deposition and CENP-A expansion, revealing a novel, catalytic-independent function in safeguarding centromeres. Overall, our work defines the molecular logic governing centromeric repression, and uncovers foundational principles of epigenetic compartmentalization.
着丝粒是细胞分裂过程中确保基因组准确分离的重要染色体区域。它们被组织成表观遗传上离散的区域:富含着丝粒蛋白A(CENP - A)的核心区域用于微管附着,以及周围促进黏连的异染色质着丝粒周围区域。尽管它们很重要,但定义、维持和划分这些染色质结构域的机制仍知之甚少。为了解决这个问题,我们破坏了在人类中建立异染色质的关键H3K9甲基转移酶——SUV39H1、SUV39H2和SETDB1。我们发现SETDB1是核心着丝粒处H3K9二甲基化所必需的,而SUV39H1/2完成三甲基化。出乎意料的是,耗尽这三种酶会导致异常高的H3K9me3,促使CENP - A扩展到着丝粒周围区域。这种杂乱的沉积是由G9a/GLP甲基转移酶介导的,它们在着丝粒核心内选择性地重新建立H3K9me3。SETDB1,无论其酶活性如何,都能阻止G9a/GLP介导的异染色质沉积和CENP - A扩展,揭示了其在保护着丝粒方面一种新的、不依赖催化作用的功能。总体而言,我们的工作定义了控制着丝粒抑制的分子逻辑,并揭示了表观遗传分区的基本原理。