Cappelletti Eleonora, Piras Francesca M, Biundo Marialaura, Bellone Rebecca R, Finno Carrie J, Kalbfleisch Ted S, Petersen Jessica L, Nergadze Solomon G, Giulotto Elena
Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
Unit of Anatomic Pathology, IRCCS San Matteo Hospital Foundation, Pavia, Italy.
Chromosome Res. 2025 Jun 30;33(1):13. doi: 10.1007/s10577-025-09773-3.
While the centromeric function is conserved and epigenetically specified by CENP-A, centromeric DNA, typically composed of satellite repeats, is highly divergent and rapidly evolving. In the species of the genus Equus (horses, asses and zebras), also known as equids, the numerous centromeres devoid of satellite repeats enabled us to carry out molecular analysis of centromeric chromatin establishing a unique model system for mammalian centromere biology. In this review, after a brief description of the rapid evolution of equids, we outline one of our most relevant initial discoveries: the position of CENP-A binding domains is variable among individuals giving rise to epialleles which are inherited as Mendelian traits. This positional variability was recently confirmed in human centromeres whose repetitive DNA organization could be analyzed thanks to telomere-to-telomere (T2T) genome assemblies. Another unexpected observation was that, in equids, CENP-B does not bind the centromeric core and is uncoupled from CENP-A and CENP-C. CENP-B is absent from the majority of chromosomes while the CENP-B binding DNA sequence (CENP-B box) is comprised within a satellite that is localized at pericentromeric or terminal positions. Finally, comparative molecular and cytogenetic analyses of satellite-free centromeres revealed that the birth of neocentromeres during the evolution of this genus occurred through two alternative mechanisms: centromere repositioning and Robertsonian fusion. These events played a key role in karyotype reshuffling and speciation. Investigating centromere organization in equids provided new insights into the complexity of centromere organization across the vast biodiversity of the mammalian world, where the majority of species remain understudied.
虽然着丝粒功能由CENP-A保守且表观遗传指定,但通常由卫星重复序列组成的着丝粒DNA高度分化且快速进化。在马属(马、驴和斑马)物种(也称为马科动物)中,众多缺乏卫星重复序列的着丝粒使我们能够对着丝粒染色质进行分子分析,从而建立了一个独特的哺乳动物着丝粒生物学模型系统。在本综述中,在简要描述马科动物的快速进化之后,我们概述了我们最相关的初步发现之一:CENP-A结合域的位置在个体间是可变的,产生了作为孟德尔性状遗传的表观等位基因。这种位置变异性最近在人类着丝粒中得到证实,由于端粒到端粒(T2T)基因组组装,其重复DNA组织得以分析。另一个意外的观察结果是,在马科动物中,CENP-B不结合着丝粒核心,并且与CENP-A和CENP-C解偶联。大多数染色体中不存在CENP-B,而CENP-B结合DNA序列(CENP-B框)包含在位于着丝粒周围或末端位置的一个卫星序列中。最后,对无卫星着丝粒的比较分子和细胞遗传学分析表明,在该属进化过程中新着丝粒的产生通过两种替代机制发生:着丝粒重新定位和罗伯逊融合。这些事件在核型重排和物种形成中起了关键作用。研究马科动物的着丝粒组织为了解哺乳动物世界广泛生物多样性中着丝粒组织的复杂性提供了新的见解,其中大多数物种仍未得到充分研究。