文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

spRefine:使用由基因组语言模型驱动的无参考框架对空间转录组学进行去噪和插补。

spRefine Denoises and Imputes Spatial Transcriptomics with a Reference-Free Framework Powered by Genomic Language Model.

作者信息

Liu Tianyu, Huang Tinglin, Jin Wengong, Chu Tinyi, Ying Rex, Zhao Hongyu

机构信息

Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, 06511, CT, USA.

Department of Biostatistics, Yale University, New Haven, 06511, CT, USA.

出版信息

bioRxiv. 2025 Jul 7:2025.04.22.649977. doi: 10.1101/2025.04.22.649977.


DOI:10.1101/2025.04.22.649977
PMID:40631230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12236840/
Abstract

The analysis of spatial transcriptomics is hindered by high noise levels and missing gene measurements, challenges that are further compounded by the higher cost of spatial data compared to traditional single-cell data. To overcome this challenge, we introduce , a deep learning framework that leverages genomic language models to jointly denoise and impute spatial transcriptomic data. Our results demonstrate that spRefine yields more robust cell- and spot-level representations after denoising and imputation, substantially improving data integration. In addition, spRefine serves as a strong framework for model pre-training and the discovery of novel biological signals, as highlighted by multiple downstream applications across datasets of varying scales. Notably, spRefine enhances the accuracy of spatial ageing clock estimations and uncovers new aging-related relationships associated with key biological processes, such as neuronal function loss, which offers new insights for analyzing ageing effect with spatial transcriptomics.

摘要

空间转录组学的分析受到高噪声水平和基因测量缺失的阻碍,与传统单细胞数据相比,空间数据成本更高,这进一步加剧了这些挑战。为了克服这一挑战,我们引入了spRefine,这是一个深度学习框架,它利用基因组语言模型对空间转录组数据进行联合去噪和插补。我们的结果表明,spRefine在去噪和插补后产生了更稳健的细胞和斑点水平表征,显著改善了数据整合。此外,spRefine作为模型预训练和发现新生物信号的强大框架,不同规模数据集的多个下游应用突出了这一点。值得注意的是,spRefine提高了空间衰老时钟估计的准确性,并揭示了与关键生物过程(如神经元功能丧失)相关的新的衰老相关关系,这为利用空间转录组学分析衰老效应提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/d9dffdb8bc96/nihpp-2025.04.22.649977v3-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/9840b5e01c5b/nihpp-2025.04.22.649977v3-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/67245d5df48f/nihpp-2025.04.22.649977v3-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/22559a745a4c/nihpp-2025.04.22.649977v3-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/928c2a793b3d/nihpp-2025.04.22.649977v3-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/aeb35dff10ad/nihpp-2025.04.22.649977v3-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/d1cfa931339e/nihpp-2025.04.22.649977v3-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/d9dffdb8bc96/nihpp-2025.04.22.649977v3-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/9840b5e01c5b/nihpp-2025.04.22.649977v3-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/67245d5df48f/nihpp-2025.04.22.649977v3-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/22559a745a4c/nihpp-2025.04.22.649977v3-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/928c2a793b3d/nihpp-2025.04.22.649977v3-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/aeb35dff10ad/nihpp-2025.04.22.649977v3-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/d1cfa931339e/nihpp-2025.04.22.649977v3-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8894/12236840/d9dffdb8bc96/nihpp-2025.04.22.649977v3-f0007.jpg

相似文献

[1]
spRefine Denoises and Imputes Spatial Transcriptomics with a Reference-Free Framework Powered by Genomic Language Model.

bioRxiv. 2025-7-7

[2]
GatorST: A Versatile Contrastive Meta-Learning Framework for Spatial Transcriptomic Data Analysis.

bioRxiv. 2025-7-19

[3]
stGRL: spatial domain identification, denoising, and imputation algorithm for spatial transcriptome data based on multi-task graph contrastive representation learning.

BMC Biol. 2025-7-1

[4]
stGNN: Spatially Informed Cell-Type Deconvolution Based on Deep Graph Learning and Statistical Modeling.

Interdiscip Sci. 2025-6-26

[5]
Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.

J Bone Miner Res. 2024-12-31

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
The Overlooked Role of Specimen Preparation in Bolstering Deep Learning-Enhanced Spatial Transcriptomics Workflows.

medRxiv. 2023-10-9

[8]
Short-Term Memory Impairment

2025-1

[9]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
The Curated Cancer Cell Atlas provides a comprehensive characterization of tumors at single-cell resolution.

Nat Cancer. 2025-5-8

[2]
scPRINT: pre-training on 50 million cells allows robust gene network predictions.

Nat Commun. 2025-4-16

[3]
Optimizing Xenium In Situ data utility by quality assessment and best-practice analysis workflows.

Nat Methods. 2025-4

[4]
Genomic language models: opportunities and challenges.

Trends Genet. 2025-4

[5]
Spatial transcriptomic clocks reveal cell proximity effects in brain ageing.

Nature. 2025-2

[6]
CosGeneGate selects multi-functional and credible biomarkers for single-cell analysis.

Brief Bioinform. 2024-11-22

[7]
Protein language models learn evolutionary statistics of interacting sequence motifs.

Proc Natl Acad Sci U S A. 2024-11-5

[8]
Modal-nexus auto-encoder for multi-modality cellular data integration and imputation.

Nat Commun. 2024-10-18

[9]
Imputing spatial transcriptomics through gene network constructed from protein language model.

Commun Biol. 2024-10-5

[10]
Reliable imputation of spatial transcriptomes with uncertainty estimation and spatial regularization.

Patterns (N Y). 2024-7-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索