Suppr超能文献

在干细胞心肌细胞模型中,磷酸葡萄糖变位酶1(PGM1)缺乏会破坏肌节和线粒体功能。

PGM1 deficiency disrupts sarcomere and mitochondrial function in a stem-cell cardiomyocyte model.

作者信息

Radenkovic Silvia, Preston Graeme, Budhraja Rohit, Muffels Irena, Ligezka Anna, Staff Nathan P, Hrstka Ron, Balakrishnan Biijina, Shah Rameen, Verberkmoes Sanne, Shammas Ibrahim, Bosnyak Inez, Stiers Kyle M, Lai Kent, Beamer Lesa J, Pandey Akhilesh, Morava Eva, Kozicz Tamas

出版信息

bioRxiv. 2025 Jul 4:2025.07.01.662580. doi: 10.1101/2025.07.01.662580.

Abstract

BACKGROUND

Phosphoglucomutase-1 (PGM1) plays a pivotal role in glycolysis, glycogen metabolism, and glycosylation. Pathogenic variants in PGM1 cause PGM1-congenital disorder of glycosylation (PGM1-CDG), a multisystem disorder with cardiac involvement. While glycosylation abnormalities in PGM1-CDG are treatable with galactose, cardiomyopathy does not improve suggesting a glycosylation-independent pathomechanism. Recently, mitochondrial abnormalities have been shown in a heart of a PGM1-deficicient patient and PGM1-mouse model. In addition, PGM1 has been associated with LDB3 (ZASP/Cypher), a sarcomeric Z-disk protein also associated with cardiomyopathy. However, the cardiac-specific role of PGM1 remains poorly understood, and targeted therapies for PGM1-related cardiomyopathy are currently lacking.

METHODS

Induced pluripotent stem cell-derived cardiomyocytes (iCMs) were generated from PGM1-deficient patient fibroblasts. Multielectrode array (MEA) recordings, untargeted (glyco)proteomics, and pathway analysis were performed to assess functional and molecular changes. Key findings were validated using tracer metabolomics and mitochondrial respiration assays.

RESULTS

PGM1-deficient iCMs exhibited reduced beating frequency, impaired contractility, and prolonged contraction kinetics. Proteomic analyses revealed depletion of Z-disk components, including LDB3. AlphaFold3 structural modeling predicted a direct interaction between PGM1 and LDB3, implicating PGM1 in Z-disk integrity, which was confirmed . In addition, mitochondrial proteins were severely depleted, prompting us to investigate mitochondrial function. Functional validation confirmed extensive metabolic rewiring, energy depletion, and severely impaired mitochondrial respiration. Finally, the drug repurposing identified possible therapeutic options that could target PGM1-deficient cardiomyopathy.

CONCLUSION

PGM1 is a key regulator of cardiomyocyte function, linking sarcomeric Z-disk integrity with mitochondrial metabolism. These mechanistic insights offer a foundation for developing targeted therapies for PGM1-CDG and potentially other cardiomyopathies involving Z-disk dysfunction.

摘要

背景

磷酸葡萄糖变位酶-1(PGM1)在糖酵解、糖原代谢和糖基化过程中起关键作用。PGM1的致病变异会导致PGM1先天性糖基化障碍(PGM1-CDG),这是一种累及心脏的多系统疾病。虽然PGM1-CDG中的糖基化异常可用半乳糖治疗,但心肌病并无改善,提示存在与糖基化无关的发病机制。最近,在一名PGM1缺陷患者的心脏和PGM1小鼠模型中发现了线粒体异常。此外,PGM1与LDB3(ZASP/密码子)有关,LDB3是一种肌节Z盘蛋白,也与心肌病有关。然而,PGM1在心脏中的特定作用仍知之甚少,目前缺乏针对PGM1相关心肌病的靶向治疗方法。

方法

从PGM1缺陷患者的成纤维细胞中生成诱导多能干细胞衍生的心肌细胞(iCMs)。进行多电极阵列(MEA)记录、非靶向(糖基化)蛋白质组学和通路分析,以评估功能和分子变化。使用示踪代谢组学和线粒体呼吸测定法对关键发现进行验证。

结果

PGM1缺陷的iCMs表现出搏动频率降低、收缩力受损和收缩动力学延长。蛋白质组学分析显示Z盘成分减少,包括LDB3。AlphaFold3结构建模预测PGM1与LDB3之间存在直接相互作用,提示PGM1与Z盘完整性有关,这一点得到了证实。此外,线粒体蛋白严重减少,促使我们研究线粒体功能。功能验证证实了广泛的代谢重编程、能量消耗和严重受损的线粒体呼吸。最后,药物重新利用确定了可能针对PGM1缺陷型心肌病的治疗选择。

结论

PGM1是心肌细胞功能的关键调节因子,将肌节Z盘完整性与线粒体代谢联系起来。这些机制性见解为开发针对PGM1-CDG以及可能涉及Z盘功能障碍的其他心肌病的靶向治疗奠定了基础。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验