Suppr超能文献

基于金属有机骨架材料的水环境中氟化物去除研究进展

Research Progress on the Removal of Fluoride From Water Environment Based on Metal-Organic Frameworks Materials.

作者信息

Tan Zhonghong, Huang Hao, Wu Haixia

机构信息

College of Urban Construction, Nanjing Tech University, Nanjing, China.

Central and Southern China Municipal Engineering Design and Research Institute Co, Ltd, Wuhan, China.

出版信息

Water Environ Res. 2025 Jul;97(7):e70136. doi: 10.1002/wer.70136.

Abstract

Fluoride pollution in water is a serious global environmental problem that threatens the stability of ecosystems and public health. Metal-organic frameworks (MOFs) show great promise as adsorbents for purifying water because of their large surface area, adjustable pores, and customizable chemical features. This article reviews the latest progress in removing fluoride from water using MOFs. It comprehensively introduces the main ways to make MOFs, assesses how well different MOFs can adsorb fluoride in contaminated water, and analyzes the mechanisms by which they remove fluoride. Additionally, it discusses how key environmental factors affect adsorption efficiency and the development of MOFs design. The future research directions for MOFs in fluoride removal involve developing green synthesis methods and composite materials, optimizing the operating conditions of adsorption and combining MOFs with other methods, strengthening the cooperation between materials science and artificial intelligence, and using machine-learning-assisted screening. This article not only provides a theoretical reference for the material development direction of MOFs but also offers a technical reference for fluoride removal from water.

摘要

水中的氟污染是一个严重的全球环境问题,威胁着生态系统的稳定性和公众健康。金属有机框架材料(MOFs)因其具有大的表面积、可调节的孔隙以及可定制的化学特性,作为水净化吸附剂展现出巨大潜力。本文综述了利用MOFs去除水中氟的最新进展。全面介绍了制备MOFs的主要方法,评估了不同MOFs对污染水中氟的吸附性能,并分析了它们去除氟的机制。此外,还讨论了关键环境因素如何影响吸附效率以及MOFs设计的发展。MOFs在氟去除方面未来的研究方向包括开发绿色合成方法和复合材料、优化吸附操作条件并将MOFs与其他方法相结合、加强材料科学与人工智能之间的合作以及利用机器学习辅助筛选。本文不仅为MOFs的材料开发方向提供了理论参考,也为水中氟的去除提供了技术参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验