文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

[基于多孔材料的吸附剂在从环境和食品样品中提取农药残留方面的最新应用]

[Recent applications of porous-material-based adsorbents for extracting pesticide residues from environmental and foodstuff samples].

作者信息

Xu Qi-Tong, Yu Meng, Xie Chang, Cao Yan, Mei Su-Rong

机构信息

Key Laboratory of Environment & Health of Ministry of Education,School of Public Health,Huazhong University of Science and Technology,Wuhan 430030,China.

出版信息

Se Pu. 2025 Jul;43(7):713-725. doi: 10.3724/SP.J.1123.2024.12009.


DOI:10.3724/SP.J.1123.2024.12009
PMID:40610766
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12231466/
Abstract

Pesticides are ubiquitous to human life but their residues are indispensable micropollutants that threaten human health. In recent years, the global use of pesticides has increased significantly in recent years, and their environmental profiles have become increasingly complex as different generations of pesticides have appeared on the market. The residues of various legacy and emerging pesticides are omnipresent in both the environment and food medias. Consequently, developing rapid and sensitive detection technologies for analyzing multiple residues is imperative. Sample pretreatment, particularly adsorbent selection and innovation, is indispensable in this regard. So far, a wide range of hybrid nanomaterials have been used for the enrichment or adsorption of pesticide residues. While traditional solid-phase-extraction-based (SPE-based) sorbents are widely used, they lack specific interactions and are poorly selective. Normal carbon materials (e.g., graphene oxide and carbon nanotubes), which have large surface areas and pore volumes, have progressed significantly; however, they still have insufficient active adsorption sites. Notably, porous materials, including metal-organic frameworks (MOFs), porous organic polymers (POPs) (including covalent organic frameworks (COFs), covalent triazine frameworks (CTFs), conjugated microporous polymers (CMPs), microporous organic networks (MONs, sub-familied by CMPs, porous aromatic frameworks (PAFs), and hyper-crosslinked polymers (HCPs)), nano-porous carbons(NPCs), and zeolites display exceptional properties because they have high porosity, tunable pore sizes, large surface areas, and diverse modification sites. In this review, strategies for the enhancement of adsorption performance of porous-material-based adsorbents, including materials hybridization, monomer modification, configuration regulation, and properties adjustment are first introduced. Furthermore, publications from 2018 to 2024 pertaining to the utilization of porous-material-based adsorbents for diverse types of pesticides were briefly elaborated. The properties of pesticides, the designs and performance of porous materials, and their interaction mechanisms were discussed. A total of 14 types of pesticides are included in the discussion, namely organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs), pyrethroids (PYRs), benzoylurea insecticides (BUs), neonicotinoid insecticides (NEOs), phenyl-pyrazole insecticides (PPZs), phenoxy carboxylic acid herbicides (PCAs), triazine herbicides (TRZHs), benzimidazole fungicides (BZDs), azole/triazoles fungicides, strobilurin fungicides (SFs), carbamate insecticides (Carbs), phenyl-urea herbicides (PUHs), and diamide insecticides. Our summary revealed that an adsorbent was predominantly designed based on the textural properties of the target pesticide and the structural characteristics of the hybrid material, such as its functional groups, polarity, and pore size, to enhance adsorption performance and selectivity. MOFs and POPs are the most commonly used pesticide adsorbents, whereas fewer NPCs have been reported in this regard. Additionally, the applications potentials of porous-material-based adsorbents were explored. The findings revealed that conventional pesticides, such as OPPs, have been significantly researched in the extraction technology field. In contrast, concerns surrounding newer pesticides, including NEOs, PPZs, and SFs, as well as some significantly detected residues (BZDs and TRZHs), have not been fully addressed, highlighting the need for future adsorbent research that prioritizes emerging and significantly detected pesticides.

摘要

农药在人类生活中无处不在,但其残留却是威胁人类健康的不可忽视的微污染物。近年来,全球农药使用量显著增加,随着不同代次农药投放市场,其环境特征日益复杂。各类传统和新型农药残留广泛存在于环境和食品介质中。因此,开发快速灵敏的多残留分析检测技术势在必行。在这方面,样品预处理,尤其是吸附剂的选择与创新不可或缺。到目前为止,多种杂化纳米材料已被用于农药残留的富集或吸附。虽然基于传统固相萃取(SPE)的吸附剂被广泛使用,但它们缺乏特异性相互作用且选择性较差。具有大表面积和孔体积的普通碳材料(如氧化石墨烯和碳纳米管)已取得显著进展;然而,它们的活性吸附位点仍然不足。值得注意的是,多孔材料,包括金属有机框架(MOF)、多孔有机聚合物(POP,包括共价有机框架(COF)、共价三嗪框架(CTF)、共轭微孔聚合物(CMP)、微孔有机网络(MON,CMP的子家族)、多孔芳香框架(PAF)和超交联聚合物(HCP))、纳米多孔碳(NPC)和沸石,因其具有高孔隙率、可调孔径、大表面积和多样的修饰位点而展现出优异性能。在本综述中,首先介绍了基于多孔材料的吸附剂提高吸附性能的策略,包括材料杂化、单体修饰、构型调控和性能调节。此外,简要阐述了2018年至2024年期间有关基于多孔材料的吸附剂用于多种农药的相关文献。讨论了农药的性质、多孔材料的设计与性能及其相互作用机制。讨论中涵盖了14种农药,即有机氯农药(OCP)、有机磷农药(OPP)、拟除虫菊酯(PYR)、苯甲酰脲类杀虫剂(BU)、新烟碱类杀虫剂(NEO)、苯基吡唑类杀虫剂(PPZ)、苯氧羧酸类除草剂(PCA)、三嗪类除草剂(TRZH)、苯并咪唑类杀菌剂(BZD)、唑类/三唑类杀菌剂、甲氧基丙烯酸酯类杀菌剂(SF)、氨基甲酸酯类杀虫剂(Carb)、苯基脲类除草剂(PUH)和双酰胺类杀虫剂。我们的总结表明,吸附剂主要是根据目标农药的结构性质和杂化材料的结构特征(如官能团、极性和孔径)来设计的,以提高吸附性能和选择性。MOF和POP是最常用的农药吸附剂,而这方面报道的NPC较少。此外,还探讨了基于多孔材料的吸附剂的应用潜力。研究结果表明,传统农药如OPP在萃取技术领域已得到大量研究。相比之下,围绕新型农药(包括NEO、PPZ和SF)以及一些大量检出的残留(BZD和TRZH)的问题尚未得到充分解决,这凸显了未来吸附剂研究需要优先关注新型和大量检出的农药。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/5035f003f94d/E410E426-04D9-4401-BEF7-A46976AA530A-F009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/508aa6f3416b/E410E426-04D9-4401-BEF7-A46976AA530A-F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/1a5a5bfbba4d/E410E426-04D9-4401-BEF7-A46976AA530A-F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/6d02bd42a62b/E410E426-04D9-4401-BEF7-A46976AA530A-F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/3c2cf318a557/E410E426-04D9-4401-BEF7-A46976AA530A-F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/3b9e25ef9614/E410E426-04D9-4401-BEF7-A46976AA530A-F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/c0bf185cf4c0/E410E426-04D9-4401-BEF7-A46976AA530A-F006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/61eb7975a79e/E410E426-04D9-4401-BEF7-A46976AA530A-F007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/46a11ed87f41/E410E426-04D9-4401-BEF7-A46976AA530A-F008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/5035f003f94d/E410E426-04D9-4401-BEF7-A46976AA530A-F009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/508aa6f3416b/E410E426-04D9-4401-BEF7-A46976AA530A-F001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/1a5a5bfbba4d/E410E426-04D9-4401-BEF7-A46976AA530A-F002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/6d02bd42a62b/E410E426-04D9-4401-BEF7-A46976AA530A-F003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/3c2cf318a557/E410E426-04D9-4401-BEF7-A46976AA530A-F004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/3b9e25ef9614/E410E426-04D9-4401-BEF7-A46976AA530A-F005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/c0bf185cf4c0/E410E426-04D9-4401-BEF7-A46976AA530A-F006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/61eb7975a79e/E410E426-04D9-4401-BEF7-A46976AA530A-F007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/46a11ed87f41/E410E426-04D9-4401-BEF7-A46976AA530A-F008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0192/12231466/5035f003f94d/E410E426-04D9-4401-BEF7-A46976AA530A-F009.jpg

相似文献

[1]
[Recent applications of porous-material-based adsorbents for extracting pesticide residues from environmental and foodstuff samples].

Se Pu. 2025-7

[2]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[3]
[Fast determination of per- and polyfluoroalkyl substances in human serum by cold-induced phase separation coupled with liquid chromatography-tandem mass spectrometry].

Se Pu. 2025-7

[4]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[5]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[6]
Reticular Chemistry within Crystalline Porous Gas Adsorbents and Membranes.

Acc Chem Res. 2025-5-15

[7]
Recent advancements in porous sorbent materials and micro solid-phase extraction (μ-SPE) modifications for improved pesticide identification in waste water.

Environ Res. 2025-6-25

[8]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[9]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[10]
Advances in fluorine-containing materials for sample preparation in the food field.

Anal Methods. 2025-6-19

本文引用的文献

[1]
Uncovering global risk to human and ecosystem health from pesticides in agricultural surface water using a machine learning approach.

Environ Int. 2024-12

[2]
Defective porous urchin-like ZnO/NiO microspheres-coated solid-phase microextraction fiber for analysis of trace polychlorinated biphenyls in milk.

J Hazard Mater. 2024-12-5

[3]
Gestational organophosphate pesticide exposure and childhood cardiovascular outcomes.

Environ Int. 2024-11

[4]
β-Cyclodextrin based magnetic hyper-crosslinked polymer: A recyclable adsorbent for effective preconcentration of triazine herbicides in complex sample matrices.

Food Chem. 2025-1-15

[5]
Unraveling soil geochemical, geophysical, and microbial determinants of the vertical distribution of organic phosphorus pesticide pollutants.

Environ Pollut. 2024-12-1

[6]
Development of a hydrophilic-lipophilic-balanced copolymer@zirconium-based metal-organic framework-based solid-phase microextraction probe for the trace determination of organophosphorus pesticides in tea infusions.

Talanta. 2025-1-1

[7]
Facial synthesis of fluorine-engineered magnetic covalent organic framework for selective and ultrasensitive determination of fipronil, its metabolites and analogs in food samples.

Food Chem. 2025-1-1

[8]
Fabrication of fluorinated magnetic microporous organic network for selective and efficient extraction of benzoylurea insecticides in tea beverages.

Food Chem. 2024-12-1

[9]
Covalent organic framework-functionalized magnetic MXene nanocomposite for efficient pre-concentration and detection of organophosphorus and organochlorine pesticides in tea samples before gas chromatography-triple quadrupole mass spectrometry analysis.

Food Chem. 2024-11-30

[10]
Efficient enrichment and sensitive detection of polychlorinated biphenyls using nanoflower MIL-on-UiO as solid-phase microextraction fiber coating.

Food Chem. 2024-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索