Suppr超能文献

通过电催化乙炔半加氢可持续合成聚合物级乙烯。

Sustainable synthesis of polymer-grade ethylene via electrified acetylene semihydrogenation.

作者信息

Yan Zihao, Xu Libang, Zhu Huiyuan

机构信息

Department of Chemistry, University of Virginia, Charlottesville, VA 22904.

Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2505151122. doi: 10.1073/pnas.2505151122. Epub 2025 Jul 9.

Abstract

The electrocatalytic semihydrogenation of acetylene (CH), powered by renewable electricity, provides an energy- and cost-efficient alternative to conventional thermocatalytic methods for purifying crude ethylene (CH) streams. This approach provides a more sustainable route to polymer-grade CH by reducing greenhouse gas emissions, yet its commercial potential remains limited by the scarcity of high-performance catalysts and the absence of comprehensive techno-economic analyses for large-scale implementation. In this study, we conduct an extensive screening and evaluation of monodisperse metal nanoparticle (NP) catalysts (Cu, Ag, Au, Pd, Bi) with tunable particle sizes and morphologies for the electrocatalytic semihydrogenation of CH in flow reactors. Among these candidates, 45 nm Cu nanocubes and 8 nm Ag NPs exhibited the highest performance. In a simulated crude ethylene stream (CH: CH = 1:80), Cu nanocubes achieved 99.7% CH removal at room temperature with a specific selectivity of 86.7% for CH and maintained stability for 120 h. Meanwhile, 8 nm Ag NPs exhibited a high specific selectivity of 98.9%, with 96.7% conversion and 24-h stability under the same conditions. A detailed techno-economic analysis confirms the feasibility of electrocatalytic systems for industrial-scale crude ethylene treatment, with an optimal conversion cost of $0.74 per kg of CH, compared to $1.34 per kg for the optimized thermocatalytic system. Furthermore, our life cycle assessment highlights the environmental benefits of the electrocatalytic pathway with a carbon emission reduction of over 50%. Our electrified, efficient CH semihydrogenation in CH crude streams minimizes environmental impact and optimizes resource use, contributing to a more sustainable future.

摘要

由可再生电力驱动的乙炔(CH)电催化半氢化反应,为传统热催化方法提纯粗乙烯(CH)流提供了一种节能且经济高效的替代方案。这种方法通过减少温室气体排放,为生产聚合物级CH提供了一条更具可持续性的途径,然而,其商业潜力仍受到高性能催化剂稀缺以及缺乏大规模实施的全面技术经济分析的限制。在本研究中,我们对具有可调粒径和形态的单分散金属纳米颗粒(NP)催化剂(Cu、Ag、Au、Pd、Bi)进行了广泛筛选和评估,用于流动反应器中CH的电催化半氢化反应。在这些候选催化剂中,45 nm的Cu纳米立方体和8 nm的Ag NPs表现出最高性能。在模拟粗乙烯流(CH:CH = 1:80)中,Cu纳米立方体在室温下实现了99.7%的CH去除率,对CH的比选择性为86.7%,并保持了120小时的稳定性。同时,8 nm的Ag NPs在相同条件下表现出98.9%的高比选择性,转化率为96.7%,稳定性为24小时。详细的技术经济分析证实了电催化系统用于工业规模粗乙烯处理的可行性,最佳转化成本为每千克CH 0.74美元,而优化后的热催化系统为每千克1.34美元。此外,我们的生命周期评估突出了电催化途径的环境效益,碳排放减少超过50%。我们在CH粗流中进行的电气化高效CH半氢化反应,最大限度地减少了环境影响并优化了资源利用,为更可持续的未来做出了贡献。

相似文献

1
Sustainable synthesis of polymer-grade ethylene via electrified acetylene semihydrogenation.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2505151122. doi: 10.1073/pnas.2505151122. Epub 2025 Jul 9.
4
Tandem Cu/ZnO/ZrO‑SAPO-34 System for Dimethyl Ether Synthesis from CO and H: Catalyst Optimization, Techno-Economic, and Carbon-Footprint Analyses.
ACS Eng Au. 2025 Apr 8;5(3):267-283. doi: 10.1021/acsengineeringau.5c00008. eCollection 2025 Jun 18.
5
Synthesis and Modification of Formate Zr-MOF (ZrFA) Toward Scalable and Cost-Cutting Gas Separation.
Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202505978. doi: 10.1002/anie.202505978. Epub 2025 May 15.

本文引用的文献

3
Effect of crystal facets in plasmonic catalysis.
Nat Commun. 2024 May 9;15(1):3923. doi: 10.1038/s41467-024-47994-y.
4
Highly Selective Acetylene-to-Ethylene Electroreduction Over Cd-Decorated Cu Catalyst with Efficiently Inhibited Carbon-Carbon Coupling.
Angew Chem Int Ed Engl. 2024 May 6;63(19):e202400122. doi: 10.1002/anie.202400122. Epub 2024 Apr 3.
6
Atomic Layers of B2 CuPd on Cu Nanocubes as Catalysts for Selective Hydrogenation.
J Am Chem Soc. 2023 Sep 13;145(36):19961-19968. doi: 10.1021/jacs.3c06514. Epub 2023 Aug 31.
8
Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia.
Nat Commun. 2023 Jun 19;14(1):3634. doi: 10.1038/s41467-023-39366-9.
10
Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment.
iScience. 2023 Feb 13;26(3):106188. doi: 10.1016/j.isci.2023.106188. eCollection 2023 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验