Suppr超能文献

通过动态生命周期评估对美国太阳能电力未来碳足迹的时空分析。

Spatiotemporal analysis of the future carbon footprint of solar electricity in the United States by a dynamic life cycle assessment.

作者信息

Lu Jiaqi, Tang Jing, Shan Rui, Li Guanghui, Rao Pinhua, Zhang Nan

机构信息

Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China.

Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.

出版信息

iScience. 2023 Feb 13;26(3):106188. doi: 10.1016/j.isci.2023.106188. eCollection 2023 Mar 17.

Abstract

Solar photovoltaics (PVs) installation would increase 20-fold by 2050; however, considerable greenhouse gas (GHG) emissions are generated during the cradle-to-gate production, with spatiotemporal variances depending on the grid emission. Thus, a dynamic life cycle assessment (LCA) model was developed to assess the accumulated PV panels with a heterogeneous carbon footprint if manufactured and installed in the United States. The state-level carbon footprint of solar electricity ( ) from 2022 to 2050 was estimated using several cradle-to-gate production scenarios to account for emissions stemming from electricity generated from solar PVs. The (min 0.032, max 0.051, weighted avg. 0.040 kg CO-eq/kWh) in 2050 will be significantly lower than that of the comparison benchmark (min 0.047, max 0.068, weighted avg. 0.056 kg CO-eq/kWh). The proposed dynamic LCA framework is promising for planning solar PV supply chains and, ultimately, the supply chain of an entire carbon-neutral energy system to maximize the environmental benefits.

摘要

到2050年,太阳能光伏(PV)装置的安装量将增长20倍;然而,在从摇篮到大门的生产过程中会产生大量温室气体(GHG)排放,其时空变化取决于电网排放。因此,开发了一个动态生命周期评估(LCA)模型,以评估如果在美国制造和安装具有异质碳足迹的累计光伏面板。利用几种从摇篮到大门的生产情景,估算了2022年至2050年美国各州太阳能电力的碳足迹( ),以考虑太阳能光伏产生的电力所产生的排放。2050年的 (最小值0.032,最大值0.051,加权平均值0.040千克二氧化碳当量/千瓦时)将显著低于比较基准(最小值0.047,最大值0.068,加权平均值0.056千克二氧化碳当量/千瓦时)。所提出的动态LCA框架对于规划太阳能光伏供应链以及最终规划整个碳中和能源系统的供应链以最大化环境效益具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6fa/9985043/a7609b9032b3/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验