Garde Shambhavi, Selvaraj Harikrishnan, Chandramouli Aakash, Reddy Gundlapally S, Bahety Devesh, Chodisetti Pavan Kumar, Kamat Siddhesh S, Reddy Manjula
Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad, Telangana 500007, India.
Department of Biology, Indian Institute of Science Education and Research, Pune, Pashan, Maharashtra 411008, India.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2505676122. doi: 10.1073/pnas.2505676122. Epub 2025 Jul 9.
Peptidoglycan (PG), a defining feature of the bacterial cell envelope, is crucial for cell integrity and morphology. PG is a macromolecular mesh consisting of glycan polymers crosslinked by short peptides encasing the cytoplasmic membrane. PG peptides contain two to five amino acids of both L- and D-configuration, with a conserved L-alanine residue at the first position in most bacteria. We previously identified a β-lactam hypersensitive mutant of lacking (renamed ) that shows incorporation of L-serine or glycine instead of L-alanine. Here, we demonstrate that PgeF is an editing enzyme that imparts fidelity to the biosynthesis of PG peptides across bacterial genera. Using extensive mass spectrometry, we find accumulation of misincorporated cytoplasmic PG precursors in the absence of . Detailed biochemical analysis of several bacterial PgeF homologs reveals that PgeF specifically cleaves serine or glycine but not alanine from the PG precursors. Additionally, expression of heterologous ligases that incorporate L-serine or glycine is lethal in the absence of , indicating that L-alanine at the first position is crucial for wall integrity. Interestingly, PgeF is selectively conserved in bacteria and vertebrates; however, we find that the PG editing activity is exclusive to bacterial homologs. Furthermore, homologs from both taxa were previously characterized as purine nucleoside phosphorylases (PNP). Here, we find that they indeed have a weak PNP activity, but with no physiological relevance in bacterial systems. Overall, our study demonstrates the existence of a conserved proofreading pathway that is fundamental to the integrity of the bacterial cell wall.
肽聚糖(PG)是细菌细胞壁的一个决定性特征,对细胞完整性和形态至关重要。PG是一种大分子网状结构,由聚糖聚合物组成,这些聚合物通过包裹细胞质膜的短肽交联在一起。PG肽包含两到五个L型和D型氨基酸,在大多数细菌中,第一个位置有一个保守的L-丙氨酸残基。我们之前鉴定出一株缺乏(重命名为)的β-内酰胺超敏突变体,该突变体显示掺入的是L-丝氨酸或甘氨酸而非L-丙氨酸。在这里,我们证明PgeF是一种编辑酶,它能确保跨细菌属的PG肽生物合成的保真度。通过广泛的质谱分析,我们发现在缺乏时错误掺入的细胞质PG前体积累。对几种细菌PgeF同源物的详细生化分析表明,PgeF能特异性地从PG前体中切割丝氨酸或甘氨酸而非丙氨酸。此外,在缺乏时,掺入L-丝氨酸或甘氨酸的异源连接酶的表达是致命的,这表明第一个位置的L-丙氨酸对细胞壁完整性至关重要。有趣的是,PgeF在细菌和脊椎动物中选择性保守;然而,我们发现PG编辑活性仅存在于细菌同源物中。此外,这两个分类群的同源物之前都被鉴定为嘌呤核苷磷酸化酶(PNP)。在这里,我们发现它们确实具有较弱的PNP活性,但在细菌系统中没有生理相关性。总体而言,我们的研究证明了存在一种保守的校对途径,它对细菌细胞壁的完整性至关重要。