Tan Haizhu, Chen Hongyu, Wang Zhenmao, He Mingguang, Wei Chiyu, Sun Lei, Wang Xueqin, Shi Danli, Huang Chengcheng, Guo Anping
Department of Preventive Medicine, Shantou University Medical College, 22 Xinling Rd, Shantou, 515031, China, 86 13318055534.
Department of Optoelectronic Information Science and Engineering, Physical and Materials Science College, Guangzhou University, Guangzhou, China.
J Med Internet Res. 2025 Jul 9;27:e66873. doi: 10.2196/66873.
Facial biometric data, while valuable for clinical applications, poses substantial privacy and security risks.
This paper aims to address the privacy and security concerns related to facial biometric data and support auxiliary diagnoses, in pursuit of which we developed Digital FaceDefender, an artificial intelligence-driven privacy safeguard solution.
We constructed a diverse set of digitally synthesized Asian face avatars representing both sexes, spanning ages 5 to 85 years in 10-year increments, using 70,000 facial images and 13,061 Asian face images. Landmark data were separately extracted from both patient and avatar images. Affine transformations ensured spatial alignment, followed by color correction and Gaussian blur to enhance fusion quality. For auxiliary diagnosis, we established 95% CIs for pixel distances within the eye region on a cohort of 1163 individuals, serving as diagnostic benchmarks. Reidentification risk was assessed using the ArcFace model, applied to 2500 images reconstructed via Detailed Expression Capture and Animation (DECA). Finally, Cohen Kappa analyses (n=114) was applied to assess agreement between diagnostic benchmarks and ophthalmologists' evaluations.
Compared to the DM method, Digital FaceDefender significantly reduced facial similarity scores (FDface vs raw images: 0.31; FLAME_FDface vs raw images: 0.09) and achieved zero Rank-1 accuracy in Pose #2-#3 and Pose #2-#5, with near-zero accuracy in Pose #4 (0.02) and Pose #5 (0.04), confirming lower reidentification risk. Cohen Kappa analysis demonstrated moderate agreement between our benchmarks and ophthalmologists' assessments for the left eye (κ=0.37) and right eye (κ=0.45; both P<.001), validating diagnostic reliability of the benchmarks. Furthermore, the user-friendly Digital FaceDefender platform has been established and is readily accessible for use.
In summary, Digital FaceDefender effectively balances privacy protection and diagnostic use.
面部生物识别数据虽然在临床应用中有价值,但存在重大的隐私和安全风险。
本文旨在解决与面部生物识别数据相关的隐私和安全问题,并支持辅助诊断,为此我们开发了Digital FaceDefender,一种人工智能驱动的隐私保护解决方案。
我们使用70000张面部图像和13061张亚洲人脸图像,构建了一组多样化的数字合成亚洲人脸头像,代表不同性别,年龄跨度从5岁到85岁,以10年为增量。分别从患者图像和头像图像中提取地标数据。仿射变换确保空间对齐,随后进行色彩校正和高斯模糊以提高融合质量。对于辅助诊断,我们在1163名个体的队列中建立了眼区域内像素距离的95%置信区间,作为诊断基准。使用ArcFace模型评估重新识别风险,该模型应用于通过详细表情捕捉和动画(DECA)重建的2500张图像。最后,应用Cohen Kappa分析(n = 114)评估诊断基准与眼科医生评估之间的一致性。
与DM方法相比,Digital FaceDefender显著降低了面部相似度得分(FDface与原始图像相比:0.31;FLAME_FDface与原始图像相比:0.09),并在姿势#2 - #3和姿势#2 - #5中实现了零Rank - 1准确率,在姿势#4(0.02)和姿势#5(0.04)中准确率接近零,证实了较低的重新识别风险。Cohen Kappa分析表明,我们的基准与眼科医生对左眼(κ = 0.37)和右眼(κ = 0.45;均P <.001)的评估之间存在中度一致性,验证了基准的诊断可靠性。此外,已经建立了用户友好的Digital FaceDefender平台,可供随时使用。
总之,Digital FaceDefender有效地平衡了隐私保护和诊断用途。