Zhou Xinyu, Li Xueyang, Chen Xinlong, Zhang Can, Wu Jiae, Li Jiarui, Wang Chao
School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
ChemSusChem. 2025 Sep 1;18(17):e202501148. doi: 10.1002/cssc.202501148. Epub 2025 Aug 4.
Silicon (Si) is famous for its high theoretical specific capacity, natural abundance, and low reduction potential. However, enormous volume change, fast capacity decay, and poor ionic conductivity hamper the practical utilization of Si-based anodes. Until now, strategies to improve cycling performance by tailoring solid electrolyte interphase (SEI) have remained less effective, especially in high-Si content anodes. In this work, the ion-conductive polyphosphasiloxane (PPS) network is constructed on the SiO anode via condensation of tetraethyl orthosilicate/tris(trimethylsilyl)phosphate (TEOS/TMSP) electrolyte additive to form a robust SEI. The PPS network with SiOP bonds exhibits a low Li transport barrier, high ionic conductivity, and decreased activation energy (E), enabling the regular (de)lithiation process. Moreover, the robust SEI mitigates the volume change of SiO anode due to the reinforcement effect from crosslinked PPS skeleton with strong SiOP linkages. As a result, SiO anode with TEOS/TMSP electrolyte additives exhibits superior cycling performance over 700 cycles with a high retention of 73.4% at 0.4 C and an average capacity decay rate of 0.038% per cycle in half cell. This work provides new insights into dual-additive electrolyte development and SEI design.
硅(Si)以其高理论比容量、天然丰度和低还原电位而闻名。然而,巨大的体积变化、快速的容量衰减和较差的离子电导率阻碍了硅基负极的实际应用。到目前为止,通过定制固体电解质界面(SEI)来提高循环性能的策略仍然效果不佳,特别是在高硅含量的负极中。在这项工作中,通过原硅酸四乙酯/三(三甲基硅基)磷酸酯(TEOS/TMSP)电解质添加剂的缩合反应,在SiO负极上构建了离子导电聚磷硅氧烷(PPS)网络,以形成坚固的SEI。具有SiOP键的PPS网络表现出低的锂传输势垒、高离子电导率和降低的活化能(E),从而实现了规则的(脱)锂过程。此外,坚固的SEI由于具有强SiOP键的交联PPS骨架的增强作用,减轻了SiO负极的体积变化。结果,添加TEOS/TMSP电解质添加剂的SiO负极在半电池中表现出优异的循环性能,在700次循环中,在0.4 C下具有73.4%的高保留率,平均容量衰减率为每循环0.038%。这项工作为双添加剂电解质开发和SEI设计提供了新的见解。