Sun Jiayang, Lv Linze, Li Yuchen, Wang Yan, Wang Longfei, Xiong Weixing, Huang Lei, Qu Qunting, Zheng Honghe
College of Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215006, P.R. China.
Huaying New Energy Materials. Co., Suzhou, Jiangsu, 215000, P.R. China.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202507688. doi: 10.1002/anie.202507688. Epub 2025 Jun 1.
Silicon (Si) anodes hold exceptional promise for high-energy-density lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (∼4200 mAh g⁻¹). However, their commercialization is severely hindered by the significant volume expansion (∼300%) and unstable solid electrolyte interphase (SEI). Conventional SEI, predominantly composed of organic species, suffers from low ionic conductivity, low electronic insulation, and poor mechanical robustness, leading to rapid capacity decay. Herein, we propose an interface engineering strategy by decorating Si nanoparticles with an in situ conversed MgF layer (with coating integrity of 94.2%). During initial lithiation, the applied MgF layer is in situ conversed into SEI film with high ionic conductivity, electronic insulation, and better mechanical adaptability. The prepared Si@MgF-1 anode achieves a high initial coulombic efficiency (91.7%), superior rate capability (2000 mAh g⁻¹ at 10 C), and remarkable cycling stability (1794.9 mAh g after 500 cycles). Full-cell based on the Si@MgF-1 anode and NCM811 cathode further validate the practicality of this approach. The robust conversion strategy for the construction of a mechanically adaptive LiF-rich SEI layer holds significant promise for the advancement of durable silicon-based LIBs.
硅(Si)阳极因其超高的理论容量(约4200 mAh g⁻¹),在高能量密度锂离子电池(LIBs)方面具有巨大的潜力。然而,其商业化受到显著的体积膨胀(约300%)和不稳定的固体电解质界面(SEI)的严重阻碍。传统的SEI主要由有机物质组成,具有低离子电导率、低电子绝缘性和较差的机械强度,导致容量迅速衰减。在此,我们提出一种界面工程策略,通过用原位转化的MgF层(涂层完整性为94.2%)修饰硅纳米颗粒。在初次锂化过程中,施加的MgF层原位转化为具有高离子电导率、电子绝缘性和更好机械适应性的SEI膜。制备的Si@MgF-1阳极实现了高初始库仑效率(91.7%)、优异的倍率性能(10 C时为2000 mAh g⁻¹)和出色的循环稳定性(500次循环后为1794.9 mAh g)。基于Si@MgF-1阳极和NCM811阴极的全电池进一步验证了该方法的实用性。构建具有机械适应性的富LiF的SEI层的稳健转化策略,对耐用硅基LIBs的发展具有重要意义。