Shabani Mahboubeh, Silva Andrea, Pellegrini Franco, Wang Jin, Buzio Renato, Gerbi Andrea, Vanossi Andrea, Sadeghi Ali, Tosatti Erio
Department of Physics, Shahid Beheshti University, 1983969411 Tehran, Iran.
International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy.
ACS Appl Mater Interfaces. 2025 Jul 23;17(29):42454-42461. doi: 10.1021/acsami.5c09866. Epub 2025 Jul 9.
Nanofriction experiments typically produce force traces exhibiting atomic stick-slip oscillations, which researchers have traditionally analyzed with ad hoc algorithms. This study successfully unravels the potential of machine learning (ML) to interpret nanofriction force traces and automatically extract Prandtl-Tomlinson (PT) model parameters. A prototypical neural network (NN) perceptron was trained on synthetic force traces generated by simulations across a wide parameter range. Despite its simplicity, this NN successfully analyzed experimental data, marking the first application of a network trained solely on computational data to experimental nanofriction. Challenges encountered in developing the NN model proved to be instructive and revealing. Poor transferability from synthetic to experimental data sets was resolved by incorporating physics-based descriptors into the synthetic training data, without experimental input. Our protocol's simplicity underscores its proof-of-concept nature, paving the way for advanced approaches. Validation with experimental data, such as graphene-coated AFM tips on 2D materials, highlights the promise of this ML approach for stick-slip nanofriction studies.
纳米摩擦实验通常会产生呈现原子级黏滑振荡的力迹线,传统上研究人员使用临时算法对其进行分析。本研究成功揭示了机器学习(ML)在解释纳米摩擦力迹线并自动提取普朗特 - 汤姆林森(PT)模型参数方面的潜力。一个典型的神经网络(NN)感知器在通过广泛参数范围内的模拟生成的合成力迹线上进行了训练。尽管其简单,但这个神经网络成功地分析了实验数据,标志着首个仅基于计算数据训练的网络在实验纳米摩擦中的应用。在开发神经网络模型过程中遇到的挑战被证明具有启发性和揭示性。通过在没有实验输入的情况下将基于物理的描述符纳入合成训练数据,解决了从合成数据集到实验数据集的较差可转移性问题。我们方案的简单性突出了其概念验证的性质,为先进方法铺平了道路。用实验数据进行验证,例如在二维材料上使用涂有石墨烯的原子力显微镜(AFM)探针,凸显了这种机器学习方法在黏滑纳米摩擦研究中的前景。