Suppr超能文献

结合聚合注意力和Transformer架构以实现脉冲神经网络的准确高效性能。

Combining aggregated attention and transformer architecture for accurate and efficient performance of Spiking Neural Networks.

作者信息

Zhang Hangming, Sboev Alexander, Rybka Roman, Yu Qiang

机构信息

College of Intelligence and Computing, Tianjin University, Tianjin, 300354, China.

National Research Center Kurchatov Institute, Moscow, 123182, Russia; National Research Nuclear University MEPhI, Moscow, 115409, Russia.

出版信息

Neural Netw. 2025 Jul 3;191:107789. doi: 10.1016/j.neunet.2025.107789.

Abstract

Spiking Neural Networks (SNNs), which simulate the spiking behavior of biological neurons, have attracted significant attention in recent years due to their distinctive low-power characteristics. Meanwhile, Transformer models, known for their powerful self-attention mechanisms and parallel processing capabilities, have demonstrated exceptional performance across various domains, including natural language processing and computer vision. Despite the significant advantages of both SNNs and Transformers, directly combining the low-power benefits of SNNs with the high performance of Transformers remains challenging. Specifically, while the sparse computing mode of SNNs contributes to reduced energy consumption, traditional attention mechanisms depend on dense matrix computations and complex softmax operations. This reliance poses significant challenges for effective execution in low-power scenarios. Traditional methods often struggle to maintain or enhance model performance while striving to reduce energy consumption. Given the tremendous success of Transformers in deep learning, it is a necessary step to explore the integration of SNNs and Transformers to harness the strengths of both. In this paper, we propose a novel model architecture, Spike Aggregation Transformer (SAFormer), that integrates the low-power characteristics of SNNs with the high-performance advantages of Transformer models. The core contribution of SAFormer lies in the design of the Spike Aggregated Self-Attention (SASA) mechanism, which significantly simplifies the computation process by calculating attention weights using only the spike matrices query and key, thereby effectively reducing energy consumption. Additionally, we introduce a Depthwise Convolution Module (DWC) to enhance the feature extraction capabilities, further improving overall accuracy. We evaluated SAFormer on the CIFAR-10, CIFAR-100, Tiny-ImageNet, DVS128-Gesture, and CIFAR10-DVS datasets and demonstrated that SAFormer outperforms state-of-the-art SNNs in both accuracy and energy consumption, highlighting its significant advantages in low-power and high-performance computing.

摘要

脉冲神经网络(SNNs)模拟生物神经元的脉冲行为,近年来因其独特的低功耗特性而备受关注。同时,以强大的自注意力机制和平行处理能力著称的Transformer模型,在包括自然语言处理和计算机视觉在内的各个领域都展现出卓越的性能。尽管SNNs和Transformer都有显著优势,但将SNNs的低功耗优势与Transformer的高性能直接结合仍具有挑战性。具体而言,虽然SNNs的稀疏计算模式有助于降低能耗,但传统注意力机制依赖密集矩阵计算和复杂的softmax操作。这种依赖给在低功耗场景下的有效执行带来了重大挑战。传统方法在努力降低能耗的同时,往往难以维持或提高模型性能。鉴于Transformer在深度学习中的巨大成功,探索SNNs与Transformer的集成以发挥两者优势是必要的一步。在本文中,我们提出了一种新颖的模型架构——脉冲聚合Transformer(SAFormer),它将SNNs的低功耗特性与Transformer模型的高性能优势相结合。SAFormer的核心贡献在于脉冲聚合自注意力(SASA)机制的设计,该机制通过仅使用脉冲矩阵查询和键来计算注意力权重,显著简化了计算过程,从而有效降低了能耗。此外,我们引入了深度卷积模块(DWC)来增强特征提取能力,进一步提高整体准确率。我们在CIFAR-10、CIFAR-100、Tiny-ImageNet、DVS128-Gesture和CIFAR10-DVS数据集上对SAFormer进行了评估,结果表明SAFormer在准确率和能耗方面均优于当前最先进的SNNs,凸显了其在低功耗和高性能计算方面的显著优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验