Revel Benoît H, Favier Adrien, Martin-Laffon Jacqueline, Vallet Alicia, Przybyla-Toscano Jonathan, Brugière Sabine, Couté Yohann, Diemer Hélène, Cianférani Sarah, Rabilloud Thierry, Bourguignon Jacques, Brutscher Bernhard, Ravanel Stéphane, Alban Claude
Univ. Grenoble Alpes, INRAE, CEA, CNRS, IRIG, LPCV, Grenoble 38000, France.
Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, Grenoble 38000, France.
J Hazard Mater. 2025 Sep 5;495:139163. doi: 10.1016/j.jhazmat.2025.139163. Epub 2025 Jul 7.
Uranium (U) is a naturally occurring radionuclide that poses chemotoxic threats to living organisms, including plants. Despite its environmental relevance, the molecular mechanisms underlying U toxicity in plant cells are not well understood. In this study, we used an integrative metalloproteomic strategy integrating chromatographic fractionation with high-resolution proteomics and inductively coupled plasma mass spectrometry to identify cellular protein targets of uranyl (U(VI)) in cultured Arabidopsis thaliana cells. This approach led to the identification of 57 candidate U-binding proteins, suggesting a broad potential for U-protein interactions in plant systems. Among these, the Glycine-Rich RNA-binding Protein 7 (GRP7), a multifunctional protein implicated in RNA processing, stress responses, and circadian regulation, emerged as a particularly compelling candidate. We purified recombinant GRP7 and demonstrated its ability to bind U(VI) with a 1:2 (protein:metal) stoichiometry in vitro. Structural investigation using solution-state nuclear magnetic resonance (NMR) spectroscopy revealed the dynamic nature of the interaction and pinpointed specific residues involved in U(VI) coordination at two distinct sites. Importantly, we showed that U(VI) binding disrupts the RNA-binding function of GRP7, suggesting a molecular mechanism by which U exposure may impair gene regulation in plants. These findings provide the first detailed molecular insight into U-protein interaction in plants and suggest that GRP7 may play a critical role in mediating U-induced toxicity through interference with RNA metabolism. This work paves the way for future studies on U toxicity and tolerance in plants, with potential implications for environmental risk assessment and phytoremediation strategies.
铀(U)是一种天然存在的放射性核素,对包括植物在内的生物构成化学毒性威胁。尽管其与环境相关,但植物细胞中铀毒性的分子机制尚未得到充分了解。在本研究中,我们采用了一种综合金属蛋白质组学策略,将色谱分离与高分辨率蛋白质组学以及电感耦合等离子体质谱相结合,以鉴定培养的拟南芥细胞中铀酰(U(VI))的细胞蛋白质靶点。这种方法导致鉴定出57种候选铀结合蛋白,表明植物系统中铀与蛋白质相互作用具有广泛的潜力。其中,富含甘氨酸的RNA结合蛋白7(GRP7),一种参与RNA加工、应激反应和昼夜节律调节的多功能蛋白,成为一个特别引人注目的候选蛋白。我们纯化了重组GRP7,并证明其在体外能够以1:2(蛋白质:金属)的化学计量比结合U(VI)。使用溶液态核磁共振(NMR)光谱进行的结构研究揭示了这种相互作用的动态性质,并确定了在两个不同位点参与U(VI)配位的特定残基。重要的是,我们表明U(VI)结合会破坏GRP7的RNA结合功能,这表明铀暴露可能损害植物基因调控的一种分子机制。这些发现首次提供了对植物中铀与蛋白质相互作用的详细分子见解,并表明GRP7可能通过干扰RNA代谢在介导铀诱导的毒性中发挥关键作用。这项工作为未来关于植物中铀毒性和耐受性的研究铺平了道路,对环境风险评估和植物修复策略具有潜在意义。