Suppr超能文献

第6组胚胎发育晚期丰富蛋白在耐缺水、维持种子玻璃态及种子寿命方面发挥关键作用。

A Group 6 LEA Protein Plays Key Roles in Tolerance to Water Deficit, and in Maintaining the Glassy State and Longevity of Seeds.

作者信息

Arroyo-Mosso Inti A, Diaz-Ardila H Nicholay, Garciarrubio Alejandro, Kumara U G V S S, Rendón-Luna David F, Nava-Ramírez Teresa B, Boothby Thomas C, Reyes José Luis, Covarrubias Alejandra A

机构信息

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

出版信息

Plant Cell Environ. 2025 Sep;48(9):6874-6896. doi: 10.1111/pce.15649. Epub 2025 Jun 5.

Abstract

Plants have a wide range of adaptive and protective mechanisms to cope with dehydration. Central in these processes are the Late Embryogenesis Abundant (LEA) proteins, whose levels notably increase in response to dehydration during seed development and vegetative tissues. Understanding the function of LEA proteins is essential for gaining insights into plant development and their adjusting responses to environmental stress. This study focuses on Group 6 LEA proteins (LEA6) from Arabidopsis thaliana: AtLEA6-2.1, AtLEA6-2.2, and AtLEA6-2.3. Phylogenetic analysis reveals that LEA6 family emerged with seed plants, pointing to a unique role in seed viability. Functional characterization using T-DNA insertion mutants demonstrated that AtLEA6-2.1, but not AtLEA6-2.2, is essential for tolerance to high-osmolarity and salinity during germination and post-germination growth. AtLEA6-2.1 deficiency also altered root architecture under salinity, increasing primary root length while reducing lateral root number and length, suggesting a role in root development not described before for a LEA protein. Furthermore, AtLEA6-2.1 is critical for seed longevity, as mutants lacking this protein showed reduced germination after natural and accelerated aging. These mutants exhibited increased glass-former fragility, indicating that AtLEA6-2.1 deficiency reduces cellular viscosity, which we found correlates with reduced longevity. Our investigation extends to protective protein assays under dehydration, revealing that the acidic nature of this protein family requires specific conditions for its In Vitro protective activity. Overall, this study underscores the essential role of AtLEA6-2.1 in the plant response to low-water availability, seed longevity, and glassy state properties, making it a potential target for enhancing plant resilience to environmental challenges.

摘要

植物具有广泛的适应和保护机制来应对脱水。这些过程的核心是胚胎后期丰富(LEA)蛋白,其水平在种子发育和营养组织脱水时显著增加。了解LEA蛋白的功能对于深入了解植物发育及其对环境胁迫的调节反应至关重要。本研究聚焦于拟南芥的第6组LEA蛋白(LEA6):AtLEA6-2.1、AtLEA6-2.2和AtLEA6-2.3。系统发育分析表明,LEA6家族与种子植物同时出现,表明其在种子活力方面具有独特作用。使用T-DNA插入突变体进行的功能表征表明,AtLEA6-2.1而非AtLEA6-2.2对于种子萌发和萌发后生长期间对高渗透压和盐度的耐受性至关重要。AtLEA6-2.1的缺失还改变了盐胁迫下的根系结构,增加了主根长度,同时减少了侧根数量和长度,这表明LEA蛋白在根系发育中具有前所未有的作用。此外,AtLEA6-2.1对种子寿命至关重要,因为缺乏该蛋白的突变体在自然老化和加速老化后发芽率降低。这些突变体表现出更高的玻璃形成前体脆性,表明AtLEA6-2.1的缺失降低了细胞粘度,我们发现这与寿命缩短相关。我们的研究扩展到脱水条件下的保护蛋白测定,结果表明该蛋白家族的酸性性质需要特定条件才能发挥体外保护活性。总体而言,本研究强调了AtLEA6-2.1在植物对低水分可用性、种子寿命和玻璃态特性的反应中的重要作用,使其成为增强植物对环境挑战适应力的潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验