Knoedler Leonard, Festbaum Christian, Dean Jillian, Baecher Helena, de Lambertye Grégoire, Maul Maximilian, Schaschinger Thomas, Niederegger Tobias, Scheiflinger Alexandra, Alfertshofer Michael, Sherwani Khalil, Steffen Claudius, Heiland Max, Koerdt Steffen, Knoedler Samuel, Kehrer Andreas
Department of Oral and Maxillofacial Surgery, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, Germany.
Department of Plastic, Hand and Reconstructive Surgery, Hospital Ingolstadt, Ingolstadt, Germany.
Sci Rep. 2025 Jul 9;15(1):24686. doi: 10.1038/s41598-025-08548-4.
Facial palsy (FP) can lead to significant psychological and physical burdens such as facial synkinesis. This involuntary simultaneous movement of facial musculature remains challenging to diagnose and treat. This study aimed to develop a cost-effective, rapid, and accurate artificial intelligence (AI)-based algorithm to screen FP patients for facial synkinesis. Data from 70 FP patients were collected at the University Hospital Regensburg and compared to healthy controls from an online platform. The standardized patient image series included 9 images, of which 3 were used to train the algorithm. The control images were single images. A total of 385 images were used to train and evaluate a convolutional neural network (CNN). The dataset was divided into training (285 images), validation (29 images), and test sets (71 images). The model was trained over 18 epochs. A web application was developed for practical use. The model achieved an accuracy of 98.6% on the test set, correctly identifying 31 of 32 synkinesis cases and all 39 images of healthy individuals. Performance metrics included an F1-score of 98.4%, precision of 100%, and recall of 96.9%. The web application allowed for image upload and rapid synkinesis prediction. The CNN-based model demonstrated high accuracy in detecting synkinesis in FP patients, offering potential for improved diagnostic accuracy and expedited treatment. Further validation with larger datasets is necessary to ensure robustness and generalizability.
面瘫(FP)会导致严重的心理和身体负担,如面部联带运动。这种面部肌肉组织的不自主同时运动在诊断和治疗方面仍然具有挑战性。本研究旨在开发一种具有成本效益、快速且准确的基于人工智能(AI)的算法,用于对面瘫患者进行面部联带运动筛查。在雷根斯堡大学医院收集了70例面瘫患者的数据,并与来自在线平台的健康对照进行比较。标准化的患者图像系列包括9张图像,其中3张用于训练算法。对照图像为单张图像。总共385张图像用于训练和评估卷积神经网络(CNN)。数据集被分为训练集(285张图像)、验证集(29张图像)和测试集(71张图像)。该模型经过18个轮次的训练。开发了一个网络应用程序以供实际使用。该模型在测试集上的准确率达到了98.6%,正确识别出32例联带运动病例中的31例以及所有39张健康个体的图像。性能指标包括F1分数为98.4%、精确率为100%、召回率为96.9%。该网络应用程序允许上传图像并快速进行联带运动预测。基于CNN的模型在检测面瘫患者的联带运动方面表现出高准确率,为提高诊断准确性和加快治疗提供了潜力。需要使用更大的数据集进行进一步验证,以确保稳健性和通用性。