Huang Jing, Wang Jingtao, Shi Junhai, Ni Hengli, Xu Shan, Wu Ping, Ren Yuexiang, Bian Lijuan, Su Chenhan, Xu Yuxuan, He Xinyu, Chen Xinjian, Li Jianming
Department of Pathology, Soochow Medical College, Soochow University, Suzhou, China.
School of Electronics and Information Engineering, Soochow University, Suzhou, China.
NPJ Digit Med. 2025 Jul 9;8(1):421. doi: 10.1038/s41746-025-01833-6.
Lymph node micro-metastasis represents the initial stage of breast cancer spread or metastasis. However, the limited size of these hidden lesions restricts dataset expansion, presenting a significant challenge for manual examination and conventional deep learning techniques. By harnessing the power of meta-learning on limited datasets, we developed a novel network named MetaTrans, equipped with a 34-category dataset (MT-MCD) to effectively pinpoint micro-metastases in lymph nodes from pathological images. MetaTrans demonstrated superior performance on two different multi-center datasets and excelled in the 0-shot task for intraoperative frozen section diagnosis. Beyond breast cancer, MetaTrans efficiently identifies micro-metastases in thyroid and colorectal cancers and can be directly applied to recognize images captured by digital cameras under a microscope. Across all clinical validation scenarios, our method surpasses state-of-the-art baselines, exhibiting robust cross-domain adaptation and task-specific reliability, which highlight its translational potential in diverse pathological settings.
淋巴结微转移是乳腺癌扩散或转移的初始阶段。然而,这些隐匿性病变的尺寸有限,限制了数据集的扩充,这对人工检查和传统深度学习技术构成了重大挑战。通过利用元学习在有限数据集上的能力,我们开发了一种名为MetaTrans的新型网络,配备了一个34类别的数据集(MT-MCD),以有效地从病理图像中精准识别淋巴结中的微转移。MetaTrans在两个不同的多中心数据集上表现出卓越性能,并且在术中冰冻切片诊断的零样本任务中表现出色。除乳腺癌外,MetaTrans还能有效识别甲状腺癌和结直肠癌中的微转移,并且可以直接应用于识别显微镜下数码相机拍摄的图像。在所有临床验证场景中,我们的方法超越了当前最先进的基线,展现出强大的跨域适应性和特定任务的可靠性,突显了其在各种病理环境中的转化潜力。